首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the macrofungus (Amanita rubescens) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by A. rubescens biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum biosorption capacity of A. rubescens for Pb(II) and Cd(II) was found to be 38.4 and 27.3mg/g, respectively, at optimum conditions of pH 5.0, contact time of 30min, biomass dosage of 4 g/L, and temperature of 20 degrees C. The metal ions were desorbed from A. rubescens using both 1M HCl and 1M HNO(3). The recovery for both metal ions was found to be higher than 90%. The high stability of A. rubescens permitted ten times of adsorption-elution process along the studies without a decrease about 10% in recovery of both metal ions. The mean free energy values evaluated from the D-R model indicated that the biosorption of Pb(II) and Cd(II) onto A. rubescens biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Pb(II) and Cd(II) ions onto A. rubescens biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both Pb(II) and Cd(II) followed well pseudo-second-order kinetics. Based on all results, It can be also concluded that it can be evaluated as an alternative biosorbent to treatment wastewater containing Pb(II) and Cd(II) ions, since A. rubescens is low-cost biomass and has a considerable high biosorption capacity.  相似文献   

2.
3.
Biosorption of cadmium(II) ions (Cd2+) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd2+ uptake was highly dependent on the initial pH and Cd2+ removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd2+ concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd2+ from aqueous solution.  相似文献   

4.
A biosorbent, Neem leaf powder (NLP), was prepared from the mature leaves of the Azadirachta indica (Neem) tree by initial cleaning, drying, grinding, washing to remove pigments and redrying. The powder was characterized with respect to specific surface area (21.45 m2g(-1)), surface topography and surface functional groups and the material was used as an adsorbent in a batch process to remove Cd(II) from aqueous medium under conditions of different concentrations, NLP loadings, pH, agitation time and temperature. Adsorption increased from 8.8% at pH 4.0 to 70.0% at pH 7.0 and 93.6% at pH 9.5, the higher values in alkaline medium being due to removal by precipitation. The adsorption was very fast initially and maximum adsorption was observed within 300 min of agitation. The kinetics of the interactions was tested with pseudo first order Lagergren equation (mean k(1)=1.2x10(-2)min(-1)), simple second order kinetics (mean k2=1.34x10(-3) gmg(-1)min(-1)), Elovich equation, liquid film diffusion model (mean k=1.39x10(-2)min(-1)) and intra-particle diffusion mechanism. The adsorption data gave good fits with Langmuir and Freundlich isotherms and yielded Langmuir monolayer capacity of 158mgg(-1) for the NLP and Freundlich adsorption capacity of 18.7 Lg(-1). A 2.0 g of NLP could remove 86% of Cd(II) at 293 K from a solution containing 158.8 mg Cd(II) per litre. The mean values of the thermodynamic parameters, DeltaH, DeltaS and DeltaG, at 293 K were -73.7 kJmol(-1), -0.24 Jmol(-1)K(-1) and -3.63 kJmol(-1), respectively, showing the adsorption process to be thermodynamically favourable. The results have established good potentiality for the Neem leaf powder to be used as a biosorbent for Cd(II).  相似文献   

5.
Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl2, NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper.  相似文献   

6.
In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.  相似文献   

7.
The surface of dried biomass of baker's yeast was modified by crosslinking cystine with glutaraldehyde. X-ray photoelectron spectroscopy and microscope were used to characterize the modified biomass. The adsorption capacity of the modified biomass for Cd(2+) and Pb(2+) showed an increase compared with the pristine biomass due to the presence of cystine on the biomass surface. Experimental data showed that the adsorption of the two metal ions increased with time until equilibrium was achieved. The adsorption capacities for Cd(2+) and Pb(2+) were 11.63 and 45.87 mg g(-1), respectively, which were determined from the Langmuir isotherm. The loaded biosorbent was regenerated using HCl solution and could be used repeatedly at six times with little loss of uptake capacity. FTIR spectroscopy revealed that carboxyl, amide, and hydroxyl groups on the biomass surface were involved in the adsorption of Cd(2+) and Pb(2+).  相似文献   

8.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

9.
Grape waste as a biosorbent for removing Cr(VI) from aqueous solution   总被引:3,自引:0,他引:3  
Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution. Adsorption tests were conducted in batch mode to study the effects of pH, contact time and adsorption isotherm of Cr(VI), which followed the Langmuir type adsorption and exhibited a maximum loading capacity of 1.91 mol/kg at pH 4. The adsorption of different metal ions like Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at different pH values 1-5 has also been investigated. The cross-linked grape waste gel was found to selectively adsorb Cr(VI) over other metal ions tested. The results suggest that cross-linked grape waste gel has high possibility to be used as effective adsorbent for Cr(VI) removal.  相似文献   

10.
A carbonaceous sorbent was prepared from rice husk via sulfuric acid treatment. Removal of Cd(II) and Se(IV) from aqueous solution was studied varying time, pH, metal concentration, temperature and sorbent status (wet and dry). Cd(II) sorption was found fast reaching equilibrium within approximately 2 h while Se(IV) sorption was slow reaching equilibrium within approximately 200 h with better performance for the wet sorbent than for the dry. Kinetics data for both metals were found to follow pseudo-second order model. Cd(II) sorption was low at low pH values and increased with pH increase, however, Se(IV) sorption was high at low pH values, and decreased with the rise in initial pH until pH 7. A fall in the final pH was noticed with Cd(II) sorption due to the release of protons indicating an ion exchange mechanism. However, for Se(IV) sorption, a rise in the final pH was observed due to protons consumption in the process. For both metals, sorption fit well the Langmuir equation with higher uptake by rising the temperature. Analysis by scanning electron microscope and X-ray powder diffraction for the sorbent after the reaction with acidified Se(IV) confirmed the availability of elemental selenium, Se(0), as particles on the sorbent surface. The reduction process of acidified Se(IV) to Se(0) is accompanied by surface oxidation. Physicochemical tests showed an increase in sorbent acidity, cation exchange capacity and surface functionality after the reaction with acidified Se(IV) indicating that oxidation processes took place on the sorbent surface. On the other hand, no changes in physicochemical tests were found after Cd(II) sorption indicating the absence of redox processes between Cd(II) and the sorbent.  相似文献   

11.
Some of the heavy metal ions such as cadmium are toxic and represent as hazardous pollutants due to their persistence in the environment. In this study the ground discarded tire rubber was used for the sorption of cadmium from aqueous solution. The batch sorption tests were conducted to investigate the sorption of Cd(II) by discarded tire rubber in the presence and absence of ultrasound. To assess the capability of sorbent, research parameters such as ultrasonic waves, solution temperature, particle size of ground tire and others were investigated. The experimental data were fitted in Langmuir model better than Freundlich one. Therefore, the former model was applied to the sorption equilibrium in order to determine the maximum metal sorption capacity in the presence and absence of ultrasound. The Langmuir constants were also obtained from the isotherms under different conditions. In the presence of ultrasound the tire rubber was a more efficient sorbent for this pollutant than its absence. According to the results, the internal porous and film diffusions were both effective in the sorption process. The porous and film diffusion coefficients of the ground tire rubber were, respectively, about 1.8 and 2.7 times more in the presence of ultrasound than its absence. The effect of ultrasound on the sorption process could be explained by the thermal and non-thermal properties of ultrasonic field.  相似文献   

12.
Biosorption of Cr(VI) and Ni(II) by a fused yeast from Candida tropicalis and Candida lipolytica under varying range of pH, initial metal concentration and reaction time was investigated. Net cation release and Cr removal reached 2.000mmol/l and 81.37% when treating 20mg/l Cr(VI) at pH 2 with 25mg/l biomass for 30min, while for Ni were 0.351mmol/l and 64.60%, respectively. Trace metal elements such as Co, Cu, Mn, Mo, Se and Zn played active role in biosorption as important ingredients of functional enzymes. Cr(VI) was reduced to less toxic Cr(III) and chelated with extracellular secretions, and further accumulated inside the cells. For Ni biosorption, however, largely a passive uptake process influenced by ion gradient led to lower adsorption capacity and cations release. Fourier transform infrared (FTIR) spectrum analysis indicated that amide and pyridine on cells were involved in binding with Cr, but for Ni, bound-OH and nitro-compounds were the main related functional groups. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis confirmed that considerable amounts of metals precipitated on cell surface when dealing with high concentration metals.  相似文献   

13.
Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.  相似文献   

14.
Pb(II) and Cd(II) biosorption on Chondracanthus chamissoi (a red alga)   总被引:1,自引:0,他引:1  
Chondracanthus chamissoi is an efficient biosorbent for Pb(II) and Cd(II). The sorption efficiency increases with pH and reaches an optimum around pH 4. Maximum sorption capacity reaches 1.37 mmol P bg(-1) and 0.76 mmol C dg(-1). The biosorbent has a marked preference for Pb(II) over Cd(II), though insufficient for separating these metals by a simple sorption step. The uptake kinetics is controlled by the resistance to intraparticle diffusion with a limited impact of particle size, metal concentration and sorbent dosage. In the present case, grinding the biomass does not improve sorption capacity and uptake kinetics. The sorption of metal ions is probably due to their interaction with carrageenan (one of the main constituents of the biosorbent): sulfonic groups (on the sulfated polysaccharide) have a higher affinity for Pb(II) than for Cd(II) according to HSAB rules.  相似文献   

15.
Pb(II) and Cd(II) removal from aqueous solutions by olive cake   总被引:1,自引:0,他引:1  
The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).  相似文献   

16.
Studies on the biosorptive ability of Gossypium hirsutum (Cotton) waste biomass outlined that smaller size of biosorbent (0.355mm), higher biomass dose (0.20g), 5 pH and 100mg/L initial Pb(II) concentration were more suitable for enhanced Pb(II) biosorption from aqueous medium. The Langmuir isotherm model and pseudo second order kinetic model fitted well to the data of Pb(II) biosorption. Highly negative magnitude of Gibbs free energy (DeltaG degrees ) indicated that the process was spontaneous in nature. In addition to this surface coverage and distribution coefficient values of Pb(II) biosorption process were also determined. At optimized conditions Pb(II) uptake was more rapid in case of industrial effluents in comparison to synthetic solutions. FTIR spectroscopic analysis revealed that the main functional groups involved in the uptake of Pb(II) on the surface of G. hirsutum biomass were carboxyl, carbonyl, amino and alcoholic.  相似文献   

17.
Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.  相似文献   

18.
A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H(2)SO(4), HNO(3), NaOH, Na(2)CO(3), CaCl(2) and NaCl. Among these reagents, 0.1M HNO(3) gave the maximum enhancement of the RB5 uptake, exhibiting 195mg/g at pH 1 with an initial RB5 concentration of 500mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 degrees C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419mg/g was obtained at pH 1 and a temperature of 35 degrees C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees and DeltaS degrees, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined.  相似文献   

19.
Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.  相似文献   

20.
Kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives have been used in this work for removing Cd(II) from aqueous solution. Batch adsorption studies were carried out under various Cd(II) concentrations, amount of clay adsorbents, pH, interaction time and temperature. The uptake of the metal was initially very fast, but gradually slowed down indicating diffusion into the interior of the adsorbent particles. The adsorption processes were more akin towards second order reaction mechanism. The suitability of the adsorbent was tested by fitting the adsorption data with Langmuir and Freundlich isotherms, which gave good fits with both isotherms. Adsorption was poor in strongly acidic solution but was improved in alkaline medium and continuously increased with rise in pH. The values of the thermodynamic parameters, DeltaH, DeltaS and DeltaG, indicated the interactions to be thermodynamically favourable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号