首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A detailed analysis of the flow-flame interactions associated with acoustically coupled heat-release rate fluctuations was performed for a 10 kW, CH4/air, swirl stabilized flame in a gas turbine model combustor exhibiting self-excited thermo-acoustic oscillations at 308 Hz. High-speed stereoscopic particle image velocimetry, OH planar laser induced fluorescence, and OH∗ chemiluminescence measurements were performed at a sustained repetition rate of 5 kHz, which was sufficient to resolve the relevant combustor dynamics. Using spatio-temporal proper orthogonal decomposition, it was found that the flow-field contained several simultaneous periodic motions: the reactant flux into the combustion chamber periodically oscillated at the thermo-acoustic frequency (308 Hz), a helical precessing vortex core (PVC) circumscribed the burner nozzle at 515 Hz, and the PVC underwent axial contraction and extension at the thermo-acoustic frequency. The global heat release rate fluctuated at the thermo-acoustic frequency, while the heat release centroid circumscribed the combustor at the difference between the thermo-acoustic and PVC frequencies. Hence, the three-dimensional location of the heat release fluctuations depended on the interaction of the PVC with the flame surface. This motivated the compilation of doubly phase resolved statistics based on the phase of both the acoustic and PVC cycles, which showed highly repeatable periodic flow-flame configurations. These include flames stabilized between the inflow and inner recirculation zone, large-scale flame wrap-up by the PVC, radial deflection of the inflow by the PVC, and combustion in the outer recirculation zones. Large oscillations in the flame surface area were observed at the thermo-accoustic frequency that significantly affected the total heat-release oscillations. By filtering the instantaneous reaction layers at different scales, the importance of the various flow-flame interactions affecting the flame area was determined. The greatest contributor was large-scale elongation of the reaction layers associated with the fluctuating reactant flow rate, which accounted for approximately 50% of the fluctuations. The remaining 50% was distributed between fine scale stochastic corrugation and large-scale corrugation due to the PVC.  相似文献   

2.
An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-exited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed ∼¼ of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate for all flames.  相似文献   

3.
Inclinational instability developing during propagation of a filtration combustion wave in an inert porous medium is studied using two-dimensional numerical model. Stable and unstable combustion waves are generated by varying combustion parameters such as pressure, equivalence ratio, filtration velocity, effective conductivity of porous media, pellet diameter and combustor scale. The wave propagation velocity of inclinational flame is studied and compared with flat flame. The growth and reduction of inclinational instability are analyzed at different conditions. The numerical results show that a development of inclinational instability causes essential flow non-uniformity and can result in a separation of the flame front in the multiple flame zones. The limited conductive and radiant heat transfer in the solid phase, small pellet diameter of packed bed, high inlet velocity, large combustor scale and low equivalence ratio promote the instability growth. The inclinational instability is suppressed in a reciprocal combustor.  相似文献   

4.
Vahid Rajabi 《传热工程》2019,40(3-4):346-361
In this paper, local and global entropy generation features are studied numerically in two research flames and a real combustor problem. The research flames are the well-known Burner Engineering Research Laboratory and Sandia flame D experimental flame databases and the real combustor is a gas-turbine can-type combustor. The main focus is on investigating the effect of the swirl number, in the range 0.0–2.4, on entropy generation characteristics due to different phenomena, including viscous, mass transfer, heat transfer, heat-mass coupling, reaction, and specifically radiation. For this purpose, the surface and volumetric local entropy generation rates are formulated based on the first-order spherical harmonics model known as “P1,” a frequently used model in combustion applications. It is observed that heat transfer and reactions are dominant causes of entropy generation with the leading contribution of reaction at lower swirl numbers and heat transfer at higher swirl values. The radiation entropy generation is slightly affected by the swirl number and is of prime importance only in near stoichiometric conditions. Moreover, it is indicated how this local entropy generation analysis can be used to discover the weaknesses in the design of a real combustor.  相似文献   

5.
While lean combustion in gas turbines is known to reduce NOx, it makes combustors more prone to thermo-acoustic instabilities, which can lead to deterioration in engine performance. The work presented in this study investigates the effectiveness of secondary injection of hydrogen to imperfectly premixed methane and ethylene flames in reducing heat release oscillations. Both acoustically forced and unforced flames were studied, and simultaneous OH and H atom PLIF (planar laser induced fluorescence) was conducted. The tests were carried out on a laboratory scale bluff-body combustor with a central V-shaped bluff body. Two-microphone method was used to estimate velocity perturbations from pressure measurements, flame boundary images were captured using high speed Mie scattering, while global heat release fluctuations were determined from OH* chemiluminescence.The results showed that hydrogen addition considerably reduced heat release oscillations for both methane and ethylene flames at all the forcing frequencies tested, with the exception of methane flames forced at 315 Hz, where oscillations increased with hydrogen addition. The addition of hydrogen reduced the extent of flame roll-up for both methane and ethylene flames, however, this reduction was larger for methane flames. NOx exhaust emissions were observed to increase with hydrogen addition for both methane and ethylene flames, with absolute NOx concentrations higher for ethylene flames, due to higher flame temperatures.  相似文献   

6.
Large-eddy simulations (LESs) of a hydrogen-enriched 1/3-scale GE7EA gas turbine combustor are conducted. Four different fuel compositions are employed to investigate the role of the CH4/H2 syngas composition on the resulting flame structure and pressure oscillations occurring inside the combustor. A comparison with the experimental data is conducted to validate the numerical results. First, imaging processing is performed using an Abel-inversion technique for the accumulated OH mass fraction showing good agreement with the experimental images. Then, the calculated velocity fields are successfully compared to the experimental (particle image velocimetry) results. The results show that the flame structure is readily altered when changing the syngas composition; this strongly affects the flow field and therefore the pressure oscillations inside the combustor. When the hydrogen composition is increased, the flame becomes shorter and thicker, and its effect on the outer recirculation zone is minimized. When the flame length approaches the radial length of the combustor under certain conditions, the flame periodically attaches to the rigid wall and the pressure oscillations inside the combustor become amplified. Overall, the LES combined with the multi-step kinetics successfully predicts the variation in the flow fields due to fuel composition changes and reveals the role of the syngas composition in the combustor.  相似文献   

7.
The prediction and the control of combustion instabilities require the identification of the combustion chamber response. This identification is usually performed by forcing the combustor (for example, modulating its inlet velocity) and measuring its response. Two methods may be found in the literature to analyze this response: identification of transfer matrices (ITM) and flame transfer functions (FTF). In ITM approaches, the burner is considered as a “black box” and a two-port formulation (based on acoustic pressure and velocity perturbations) is used to construct a transfer matrix linking acoustic fluctuations on both sides of the burner. A drawback of this method is that in experiments, the measurement of unsteady pressure and velocity in burnt gases can be difficult. In FTF approaches, pressure measurements are replaced by a global heat release measurement (usually based on optical methods). The heat release fluctuations are then related to the flow velocity modulations at a reference point (usually the combustor inlet) through a transfer function. This paper uses a compressible numerical simulation of a forced laminar Bunsen flame to analyze FTF and ITM methods. Results show that FTF approaches lead to an ill-defined problem as soon as the reference point is not close enough to the chamber. This “compactness” limit is quantified here in terms of distance between the reference point and the local chamber. The source of the problem is that FTF approaches correlate heat release fluctuations to velocity oscillations only: extended FTF models are then proposed using the local unsteady pressure as well as the velocity upstream of the flame to predict the heat release oscillations. These models are tested numerically and provide consistent values when the reference point location changes or when upstream and downstream conditions are varied. These results lead to simple recommendations for system identification.  相似文献   

8.
为研究多孔介质稳焰器孔密度变化对贫预混旋流火焰振荡燃烧特性的影响,通过光电倍增管测量全局火焰热释放率,采用双麦克风方法测量旋流器入口速度脉动,获得不同孔密度多孔介质稳焰器火焰传递函数;并通过高速相机测量不同孔密度多孔介质稳焰器振荡火焰结构的变化。试验结果表明:多孔介质能够改变燃烧室声模态,有效抑制燃烧振荡,但孔密度对受迫燃烧火焰热释放率和压力脉动影响具有非线性;高频入口扰动对火焰响应特性影响较弱,火焰受迫响应呈现低通滤波特性;火焰传递函数增益峰值对应入口激励频率存在差异,但相位分布斜率基本一致;多孔介质导致火焰向稳焰器中心轴线聚拢,相干结构更加明显;宽频扰动范围内的火焰张角分布趋势与火焰传递函数增益曲线的分布趋势相反。  相似文献   

9.
With a global focus on the reduction of fossil fuel consumption and harmful pollutant emissions, new technologies have been raised offering reduced emissions with the combustion of alternative and renewable fuels. Low swirl combustion and the addition of highly reactive fuels into the fuel stream are two methods that have been shown to meet these challenges. In the present study, the thermo-acoustic behavior of a lean premixed low swirl combustor is examined by the variation of several parameters: the equivalence ratio, bulk velocity, chamber pressure, and the addition of hydrogen into the fuel mixture. It is reported that the natural modes of the chamber employed shift upwards for both fuel mixtures examined when increasing the equivalence ratio. As additional heat is dumped into the chamber, the increase in acoustic energy is being pumped through these natural modes. An increase in the bulk velocity is found to have opposite effects on these dominant acoustic modes for the two mixtures investigated. The methane mixture shows negative shifts in frequency when increasing the bulk velocity, whereas the hydrogen-methane mixture displays upward-shifting frequencies. Elevating the chamber pressure results in an increase in the acoustic modes for both mixtures, although the trend is more consistently linear for the hydrogen-methane flames.  相似文献   

10.
In this study, the effect of CO2 dilution on the thermoacoustic stability of propane-oxyfuel flames is studied in a non-premixed, swirl-stabilized combustor. The results, obtained at a fixed combustor power density (4 MW/m3 bar) and global stoichiometric equivalence ratio (Φ = 1.0), show that the oxy-flame is stable at 0% and low CO2 concentrations in the oxidizer. A self-amplifying coupling between heat release and pressure fluctuations was observed to occur at the CO2 concentration of 45%, which matches the point of flame transition from a jet-like to a V-shaped flame resulting from the formation of inner recirculation zone. The observed frequency for both the pressure and heat release oscillations is 465 Hz and the ensuing thermoacoustic instability is believed to have been resulted from vortexes and flame interactions. Subsequent to the coupling of the oscillations at the CO2 concentration of 45%, their amplitudes grew at 50% to 60% CO2 dilution levels. The maximum amplitude was observed at 60% CO2 concentration after which, as CO2 dilution level increases, the acoustic amplitude and that of its counterpart in the heat release spectrum decreased due to damping (energy dissipation) arising from heat loss and viscous dissipation. An increase in hydrogen concentration in the fuel and a decrease in the combustor power density were observed to lower the acoustic amplitude. Furthermore, a frequency shift is observed with a change in the combustor firing rate, which shows that the mode scales with the flow velocity, and therefore, unlikely to be a natural acoustic mode of the combustor. This study, therefore, reveals thermoacoustic instability in non-premixed oxy-combustion driven by changes in flame dynamics and macrostructures as the CO2 concentration in the oxidizer mixture varies.  相似文献   

11.
为研究贫预混预蒸发(LPP)燃烧室振荡燃烧规律和LPP火焰结构,利用动态压力传感器测量了LPP燃烧室内不同进气参数下时域及频域上的压力脉动;利用激光诱导荧光(PLIF)测量系统研究了不同进气参数下的LPP火焰结构变化规律。结果表明:随着燃烧室入口流速的增加,激励出的振荡燃烧的当量比区域会减小;在一定的入口流速下,所激励的振荡燃烧主频会随着当量比的增加而增加;随着燃烧室入口空气温度的提高,激励出振荡燃烧的区域会减小,激励出的振荡燃烧的强度会下降,但振荡燃烧的主频均会增加;稳定燃烧时,LPP火焰为V型火焰;振荡燃烧则会将LPP火焰转化为平整型火焰。  相似文献   

12.
The combined dynamics of swirler and turbulent premixed swirling flames   总被引:8,自引:0,他引:8  
The dynamics of premixed confined swirling flames is investigated by examining their response to incident velocity perturbations. A generalized transfer function designated as the flame describing function (FDF) is determined by sweeping a frequency range extending from 0 to 400 Hz and by changing the root mean square fluctuation level between 0% and 72% of the bulk velocity. The unsteady heat release rate is deduced from the emission intensity of OH* radicals. This global information is complemented by phase conditioned Abel transformed emission images. This processing yields the distribution of light emission. By assuming that the light intensity is proportional to the heat release rate, it is possible to deduce the distribution of unsteady heat release rate in W m−3 and see how it evolves with time during the modulation cycle and for different forcing frequencies. These data can be useful for the determination of regimes of instability but also give clues on the mechanisms which control the swirling flame dynamics. It is found from experiments and demonstrated analytically that a swirler submitted to axial acoustic waves originating from the upstream manifold generates a vorticity wave on its downstream side. The flame is then submitted to a transmitted axial acoustic perturbation which propagates at the speed of sound and to an azimuthal velocity perturbation which is convected at the flow velocity. The net result is that the dynamical response and unsteady heat release rate are determined by the combined effects of these axial and induced azimuthal velocity perturbations. The former disturbance induces a shedding of vortices from the injector lip which roll-up the flame extremity while the latter effectively perturbs the swirl number which results in an angular oscillation of the flame root. This motion is equivalent to that which would be induced by perturbations of the burning velocity. The phase between incident perturbations is controlled by the convective time delay between the swirler and the injector. The constructive or destructive interference between the different perturbations is shown to yield the low and high gains observed for certain frequencies.  相似文献   

13.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

14.
The operating regime of a gas turbine combustor is highly sensitive to fuel composition changes. In particular, the addition of hydrogen, a major constituent of syngas, has a major effect on flame behavior due to the higher burning rates associated with hydrogen. A laboratory scale premixed test rig is constructed in order to study such effects. The fuel composition is incremented with increasing hydrogen starting from 100% methane. It is observed that increased RMS pressure levels and higher susceptibility to flashback occur with increasing hydrogen volume fraction. Furthermore, hydrogen enrichment can cause an abrupt change in the dominant acoustic mode. Measurements are reported of real-time heat release, emissions and flashback. Particular emphasis is put on understanding the relationship between the thermo-acoustic induced pressure oscillations and flashback.  相似文献   

15.
A numerical study of the swirl effect on a coaxial jet combustor flame including radiative heat transfer is presented. In this work, the standard k-ε model is applied to investigate the turbulence effect, and the eddy dissipation model (EDM) is used to model combustion. The radiative heat transfer and the properties of gases and soot are considered using a coupled of the finite-volume method (FVM), and the narrow-band based weighted-sum-of-gray gases (WSGG-SNB) model. The results of this work are validated by experiment data. The results clearly show that radiation must be taken into account to obtain good accuracy for turbulent diffusion flame in combustor chamber. Flame is very influenced by the radiation of gases, soot, and combustor wall. However, swirl is an important controlling variable on the combustion characteristics and pollutant formation.  相似文献   

16.
17.
This paper presents an experimental study into the structure and dynamics of the phase-averaged heat release rate during self-excited spinning and standing azimuthal modes in an annular combustion chamber. The flame response was characterised using two methods: high-speed OH chemiluminescence imaged above the annulus to investigate the structure of the phase-averaged fluctuations in heat release rate, and high-speed OH-PLIF measured across the centreline of two adjacent flames to investigate phase-averaged flame dynamics. Two-microphone measurements were obtained at three circumferential locations to determine the modes and the amplitude of the velocity fluctuations. It was found that the flame responds differently to spinning and standing wave modes. During standing wave modes, the amplitude of the unsteady heat release rate of each flame (sector) varied according to its location in the mode shape with maximum fluctuations occurring at the pressure anti-nodes and minimum fluctuations occurring at the pressure nodes. At the pressure anti-nodes, peak fluctuations result from the production of flame surface area by axisymmetric flame motions caused by the modulation of flow at the burner inlet by the pressure fluctuations. However, at the pressure nodes, an anti-symmetric, transverse flapping motion of the flame occurred producing negligible unsteady heat release rate over the oscillations cycle via the mechanism of cancellation. During spinning modes, the structure of the heat release rate was found to be asymmetric and characterised by the preferential suppression of shear layer disturbances depending on the spin direction.  相似文献   

18.
This study describes an analytical method for computing azimuthal modes due to flame/acoustics coupling in annular combustors. It is based on a quasi-one-dimensional zero-Mach-number formulation where N burners are connected to an upstream annular plenum and a downstream chamber. Flames are assumed to be compact and are modeled using identical flame transfer function for all burners, characterized by an amplitude and a phase shift. Manipulation of the corresponding acoustic equations leads to a simple methodology called ANR (annular network reduction). It makes it possible to retain only the useful information related to the azimuthal modes of the annular cavities. It yields a simple dispersion relation that can be solved numerically and makes it possible to construct coupling factors between the different cavities of the combustor. A fully analytical resolution can be performed in specific situations where coupling factors are small (weak coupling). A bifurcation appears at high coupling factors, leading to a frequency lock-in of the two annular cavities (strong coupling). This tool is applied to an academic case where four burners connect an annular plenum to a chamber. For this configuration, analytical results are compared with a full three-dimensional Helmholtz solver to validate the analytical model in both weak and strong coupling regimes. Results show that this simple analytical tool can predict modes in annular combustors and investigate strategies for controlling them.  相似文献   

19.
Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured
using the OH-PLIF method under different fuel and air swirl intensity.The flame operated under
atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5%
CO,22.5% H2 and 49% N2 at a thermal power of 34 kW.Results indicate that increasing the air swirl
intensity with the same fuel,swirl intensity flame structures showed little difference except a small
reduction of flame length;but also,with the same air swirl intensity,fuel swirl intensity showed great
influence on flame shape,length and reaction zone distribution.Therefore,compared with air swirl
intensity,fuel swirl intensity appeared a key effect on the flame structure for the model
combustor.Instantaneous OH-PLIF images showed that three distinct typical structures with an
obvious difference of reaction zone distribution were found at low swirl intensity,while a much
compacter flame structure with a single,stable and uniform reaction zone distribution was found at
large fuel-air swirl intensity.It means that larger swirl intensity leads to efficient,stable combustion of
the syngas diffusion flame.  相似文献   

20.
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer function between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号