首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This work presents results from detailed chemical kinetics calculations of electronically excited OH (A2Σ, denoted as OH) and CH (A2Δ, denoted as CH) chemiluminescent species in laminar premixed and non-premixed counterflow methane-air flames, at atmospheric pressure. Eight different detailed chemistry mechanisms, with added elementary reactions that account for the formation and destruction of the chemiluminescent species OH and CH, are studied. The effects of flow strain rate and equivalence ratio on the chemiluminescent intensities of OH, CH and their ratio are studied and the results are compared to chemiluminescent intensity ratio measurements from premixed laminar counterflow natural gas-air flames. This is done in order to numerically evaluate the measurement of equivalence ratio using OH and CH chemiluminescence, an experimental practise that is used in the literature. The calculations reproduced the experimental observation that there is no effect of strain rate on the chemiluminescent intensity ratio of OH to CH, and that the ratio is a monotonic function of equivalence ratio. In contrast, the strain rate was found to have an effect on both the OH and CH intensities, in agreement with experiment. The calculated OH/CH values showed that only five out of the eight mechanisms studied were within the same order of magnitude with the experimental data. A new mechanism, proposed in this work, gave results that agreed with experiment within 30%. It was found that the location of maximum emitted intensity from the excited species OH and CH was displaced by less than 65 and 115 μm, respectively, away from the maximum of the heat release rate, in agreement with experiments, which is small relative to the spatial resolution of experimental methods applied to combustion applications, and, therefore, it is expected that intensity from the OH and CH excited radicals can be used to identify the location of the reaction zone. Calculations of the OH/CH intensity ratio for strained non-premixed counterflow methane-air flames showed that the intensity ratio takes different values from those for premixed flames, and therefore has the potential to be used as a criterion to distinguish between premixed and non-premixed reaction in turbulent flames.  相似文献   

2.
Formation of NOx in counterflow methane/air triple flames at atmospheric pressure was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. Results indicate that in a triple flame, the appearance of the diffusion flame branch and the interaction between the diffusion flame branch and the premixed flame branches can significantly affect the formation of NOx, compared to the corresponding premixed flames. A triple flame produces more NO and NO2 than the corresponding premixed flames due to the appearance of the diffusion flame branch where NO is mainly produced by the thermal mechanism. The contribution of the N2O intermediate route to the total NO production in a triple flame is much smaller than those of the thermal and prompt routes. The variation in the equivalence ratio of the lean or rich premixed mixture affects the amount of NO formation in a triple flame. The interaction between the diffusion and the premixed flame branches causes the NO and NO2 formation in a triple flame to be higher than in the corresponding premixed flames, not only in the diffusion flame branch region but also in the premixed flame branch regions. However, this interaction reduces the N2O formation in a triple flame to a certain extent. The interaction is caused by the heat transfer and the radical diffusion from the diffusion flame branch to the premixed flame branches. With the decrease in the distance between the diffusion flame branch and the premixed flame branches, the interaction is intensified.  相似文献   

3.
This paper investigates the effects of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames by numerical simulation. The results reveal that flame temperature changes due to the combined effects of adiabatic temperature, fuel Lewis number and radiation heat loss, when hydrogen/reformate gas is added to the fuel of a methane/air diffusion flame. The effect of Lewis number causes the flame temperature to increase much faster than the corresponding adiabatic equilibrium temperature when hydrogen is added, and results in a qualitatively different variation from the adiabatic equilibrium temperature as reformate gas is added. At some conditions, the addition of hydrogen results in a super-adiabatic flame temperature. The addition of hydrogen/reformate gas causes NO formation to change because of the variations in flame temperature, structure and NO formation mechanism, and the effect becomes more significant with increasing strain rate. The addition of a small amount of hydrogen or reformate gas has little effect on NO formation at low strain rates, and results in an increase in NO formation at moderate or high strain rates. However, the addition of a large amount of hydrogen increases NO formation at all strain rates, except near pure hydrogen condition. Conversely, the addition of a large amount of reformate gas results in a reduction in NO formation.  相似文献   

4.
The combustion of high-temperature off-gas of steelmaking converter with periodical change of temperature and CO concentration always leads to CO and NOx over-standard emissions. In the paper, high-temperature off-gas combustion is simulated by adopting counterflow diffusion flame model, and some influencing factors of CO and NOx emissions are investigated by adopting a detailed chemistry GRI 3.0 mechanism. The emission index of NOx (EINOx) decreases 1.7–4.6% when air stoichiometric ratio (SR) increase from 0.6 to 1.4, and it dramatically increases with off-gas temperature at a given SR when the off-gas temperature is above 1500 K. High-concentration CO in off-gas can result in high NOx emissions, and NOx levels increase dramatically with CO concentration when off-gas temperature is above 1700 K. Both SR and off-gas temperature are important for the increase of CO burnout index (BICO) when SR is less than 1.0, but BICO increase about 1% when off-gas temperature increases from 1100 K to 1900 K at SR > 1.0. BICO increases with CO concentration in off-gas, and the influence of off-gas temperature on BICO is marginal. BICO increases with the relative humidity (RH) in air supplied, but it increases about 0.5% when RH is larger than 30%.  相似文献   

5.
The effects of dimethyl ether addition to fuel on the formation of polycyclic aromatic hydrocarbons and soot were investigated experimentally and numerically in a laminar coflow ethylene diffusion flame at atmospheric pressure. The relative concentrations of polycyclic aromatic hydrocarbon species and the relative soot volume fractions were measured using planar laser-induced fluorescence and two-dimensional laser-induced incandescence techniques, respectively. Experiments were conducted over the entire range of dimethyl ether addition from pure ethylene to pure dimethyl ether in the fuel stream. The total carbon mass flow rate was maintained constant when the fraction of DME in the fuel stream was varied. Numerical calculations of nine diffusion flames of different dimethyl ether fractions in the fuel stream were performed using a detailed reaction mechanism consisting of 151 species and 785 reactions and a sectional soot model including soot radiation, inception of nascent soot particle due to collision of two pyrene molecules, heterogeneous surface growth and oxidation following the hydrogen abstraction acetylene addition mechanism, soot particle coagulation, and PAH surface condensation. The addition of a relatively small amount of dimethyl ether to ethylene was found experimentally to increase the concentrations of both polycyclic aromatic hydrocarbons and soot. The synergistic effect on polycyclic aromatic hydrocarbons persists over a wider range of dimethyl ether addition. The numerical results reproduce the synergistic effects of dimethyl ether addition to ethylene on both polycyclic aromatic hydrocarbons and soot, though the magnitude of soot volume fraction overshoot and the range of dimethyl ether addition associated with the synergistic effect of soot are less than those observed in the experiment. The synergistic effects of dimethyl ether addition to ethylene on many hydrocarbon species, including polycyclic aromatic ones, and soot can be fundamentally traced to the enhanced methyl concentration with the addition of dimethyl ether to ethylene. Contrary to previous findings, the pathways responsible for the synergistic effects of benzene, polycyclic aromatic hydrocarbons, and soot in the ethylene/dimethyl ether system are found to be primarily due to the cyclization of l-C6H6 and n-C6H7 and to a much lesser degree due to the interaction between C2 and C4 species for benzene formation, rather than the propargyl self-combination reaction route, though it is indeed the most important reaction for the formation of benzene.  相似文献   

6.
A new type of microbial fuel cell (MFC), multi-anode/cathode MFC (termed as MAC MFC) containing 12 anodes/cathodes were developed to harvest electric power treating domestic wastewater. The power density of MAC MFCs increased from 300 to 380 mW/m2 at the range of the organic loading rates (0.19-0.66 kg/m3/day). MAC MFCs achieved 80% of contaminant removal at the hydraulic retention time (HRT) of 20 h but the contaminant removal deceased to 66% at the HRT of 5 h. In addition, metal-doped manganese dioxide (MnO2) cathodes were developed to replace the costly platinum cathodes, and exhibited high power density. Cu-MnO2 cathodes produced 465 mW/m2 and Co-MnO2 cathodes produced 500 mW/m2. Due to the cathode fouling of the precipitation of calcium and sodium, a decrease in the power density (from 400 to 150 mW/m2) and an increase in internal resistance (Rin) (from 175 to 225 Ω) were observed in MAC MFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号