首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the effects of Cl2, SO2, and NO on the mercury (Hg) speciation during oxy-combustion and compared it with the Hg speciation in air-simulated flue gas with Cl2. Experiments were conducted in a bench-scale device at 200 °C. The results of Hg oxidation in an N2 and CO2 atmosphere with Cl2 showed that CO2 indirectly restrained Hg oxidation. Oxy-simulated flue gas promoted Hg oxidation more than air-simulated flue gas promoted that, because the oxygen in oxy-simulated flue gas indirectly promoted Hg oxidation using Cl2. The percentage of Hg oxidized in both oxy-simulated flue gas and air-simulated flue gas with NO decreased as the concentration of Cl2 increased because NO restrained Hg oxidation with Cl2 through the elimination of the O and ClO radicals. SO2 inhibited Hg oxidation with Cl2 by consuming the O radicals. Moreover, when both NO and SO2 were present in oxy-simulated flue gas with Cl2, the effect of SO2 on Hg oxidation was related to the NO concentration.  相似文献   

2.
《Energy》2005,30(2-4):475-484
The formation of N2O in a mixture of NO, CO, H2, O2 and N2 was investigated experimentally in a tubular-flow reactor containing a catalyst.It was found that the reduction of NO is enhanced by the presences of H2, and to a lesser extent CO, and that N2O is formed as a by-product of NH3 decomposition and NO reduction in the presence of H2, and through NO reduction in the presence of CO. The main product of NH3 oxidation is N2 in addition to the products of NO and N2O, and the rate of conversion for NH3 to N2O is about 10%. The conversion of NO to N2O is higher in the presence of H2 than in the presence of CO at lower temperature, and there is a range of temperature in which the formation of N2O is enhanced in the presence of either H2 or CO, whereas CO enhances N2O production from catalytic NO reduction more than H2 in a CO/H2/NO/O2/N2 gas system.  相似文献   

3.
《Energy》2005,30(2-4):337-345
To investigate the reaction chemistry of HCN oxidation, a modeling study was performed. The plug flow calculation code was used at atmospheric pressure in the temperature range from 1000 to 1400 K. The effect of initial H2O concentrations and that of other components were discussed. The oxidation of HCN is controlled primarily by the HCN+OH reaction in case of increasing H2O concentration. The oxidation of HCN starts at lower temperatures and the conversion of HCN to NO is inhibited by increase in H2O concentration. N2O formation by the NCO+NO reaction is inhibited by increase in H2O concentration because of the small amount of NO and NCO. In the presence of initial NO, NCO acts as a reducing agent for NO. NCO mainly reacts with initial NO, so N2O formation is not affected by H2O concentration. In case of adding CO, CO oxidation chemistry acts as a source of a radical pool, and HCN oxidation shifts to lower temperatures. Increasing H2O affects, the consumption of O radical and inhibits NO formation. The effect of H2O concentration on N2O formation is small because of the number of O and H radicals formed by CO oxidation.  相似文献   

4.
Hao Liu  Yingjuan Shao 《Applied Energy》2010,87(10):3162-3170
Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO2 dominant stream, other impurities are expected to be present in the CO2 stream. The impurities in the CO2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO2 stream of oxy-coal combustion are N2/Ar, O2 and H2O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N2/Ar concentration of the CO2 stream can vary between ca. 1% and 6%, mainly depending on the O2 purity of the air separation unit, and the O2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H2O concentration of the CO2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NOx and SO2 are the two main polluting impurities of the CO2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NOx in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NOx emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NOx within the combustion furnace by the reburning mechanism and the char-NO reactions are the main reason for a smaller amount of NOx emitted by the oxy-coal combustion plant. The concentration of SO2 in the flue gas of an oxy-coal combustion plant can be up to six times to that of an equivalent air-coal combustion plant if the recycling flue gas is not desulphurized. The flue gas volume flow rate of an oxy-coal combustion plant is much smaller (<20%) than that of an equivalent air-coal combustion plant, which is a significant advantage for the purification of the flue gas.  相似文献   

5.
A chemical kinetic model for determining the mole fractions of stable and intermediate species for CH4/NO2/O2 flames is developed. The model involves 30 different species in 101 chemical elementary reactions. The mole fractions of the species are plotted as a function of the distance from the surface of the burner. The effects of the equivalence ratio on the concentrations of CO, CO2, N2, NH2, OH, H2O, NO and NO2 for lean CH4/NO2/O2 flames in the post flame zone at 50 Torr are obtained. The flames are flat, laminar, one dimensional and premixed. The calculated concentration profiles as a function of the equivalence ratio and distance from the surface of the burner are compared with the experimental data. The comparison indicates that the kinetics of the flames are reasonably described by the developed model. The mole fraction of N2, NH2, OH, H2O, CO2 and CO increase while the mole fractions of NO and NO2 decrease by increasing the equivalence ratio for lean flames. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

7.
Syngas is a promising alternative fuel for stationary power generation due to cleaner combustion than convectional fossil fuels. During the gasification processes, the by-products of CO2, H2O, or N2 may be present in the syngas mixture to control the flame temperature and emissions. Several studies indicated that syngas with dilutions is capable of reducing pollutant emissions such as NOx emissions. This work applied a numerical model of opposed-jet diffusion fames to explore the dilution effects on NOx formation and differentiate the inert effect, thermal/diffusion effect, chemical effect, and radiation effect from CO2, H2O, or N2 dilutions. The numerical study was performed by a revised OPPDIF program coupling with narrowband radiation model and detail chemical mechanism. The dilution effects on NOx formation were analyzed by comparing the realistic and hypothetical cases. Regardless the diluent types, the inert effect is the main cause to reduce NO production, followed by chemical effect and radiation effect. The thermal/diffusion effect may promote NO formation because the preferential diffusion due to different diffusivities between diluents and syngas magnifies the reaction rate locally. CO2 dilution reduces NO by radiation effect at low strain rate, and contributes NO reduction by chemical effect at high strain rate. At the same dilution percentage, CO2 dilution reduces NO production the most, followed by H2O and N2. Besides the thermal/diffusion effect, the chemical effect of H2O enhances NO production through thermal route and reburn route.  相似文献   

8.
Regulated and unregulated gaseous emissions with high pressure and low pressure EGR (exhaust gas recirculation) system were tested in a 4-cylinder, light-duty diesel EURO IV engine typically used in European vehicles. Four different engine calibrations with the low pressure EGR system were studied. Regulated emissions of NOX, CO, HC and CO2 were measured for each configuration. Unburned Hydrocarbon Speciation, HCHO (formaldehyde), HCOOH (formic acid) and N2O (nitrous oxide) were also measured in order to determine the MIR (maximum incremental reactivity) of the gaseous emissions. Pollutants were measured without the DOC (diesel oxidation catalyst) to gather data about raw emissions. When the low pressure EGR system was used, decreases in NOX, N2O and fuel consumption were observed and significant increases HC, CO and unregulated emissions; this is the result of a lower intake manifold temperature, which provides a higher gas density which modifies the combustion process. The potential of tropospheric ozone production was higher in all cases when the low pressure EGR was used.  相似文献   

9.
《Journal of power sources》2006,159(2):1266-1273
In order to supply pure hydrogen to proton exchange membrane (PEM) fuel cells and avoid CO poisoning, selective CO oxidation in H2 was studied over Ce-Pt/γ-Al2O3. Adding the Ce promoted the CO conversion and selectivity of Pt/γ-Al2O3 with changing loading weights of Pt and Ce, oxygen concentration, residence time, and the composition of gases (H2O, CO2, and N2). At 250 °C, adding H2O to the feed gas enhanced the CO conversion due to the water–gas shift reaction. While, adding CO2 to the feed gas suppressed the CO conversion due to the reversible water–gas shift reaction. In situ BET and XRD tests showed that well-dispersed metallic Pt particles (−2 nm) existed on the Ce oxide over the alumina support, which helps to supply oxygen to the Pt for a high activity of CO oxidation and selectivity.  相似文献   

10.
11.
The emission of both nitrogen oxides and soot from combustion processes is still a matter of concern. When a flue gas recirculation (FGR) technique is applied, the presence of a given nitrogen oxide in the recirculated mixture can affect the emissions of other pollutants, such as soot, and be used for its control in a combustion process. In this context, the present work is focused on the identification of the effect of the main nitrogen oxides (NO, NO2 and N2O) present in combustion systems on soot and main product gases formation from the pyrolysis of ethylene, at atmospheric pressure and in the 975–1475 K temperature range. The experimental results are examined to assess the effectiveness of each nitrogen oxide in suppressing or boosting soot formation, to achieve the possible nitrogen oxides reduction, and to identify the elementary steps involved in the nitrogen oxides and ethylene conversion as function of the different nitrogen oxides. This analysis is supported on model calculations.  相似文献   

12.
A series of carbon nano-tubes supported platinum-nickel catalysts were prepared and used for CO preferential oxidation in H2-rich streams. The catalysts were characterized by using N2-adsorption, XRD, HRTEM, H2-TPD and H2-TPR techniques. Effects of platinum and nickel loading amount, CO2 and H2O in the feed stream on the activity and selectivity over the catalysts were investigated. The results of catalytic performance tests show that the carbon nano-tubes supported Pt-Ni catalysts are very active and highly selective at low temperature for CO preferential oxidation in 1 vol. % CO, 1 vol. %O2, 50 vol. % H2 and N2 gases. Adding 12.5 vol. % of CO2 into the feed gases has slight negative influence on CO conversion. Adding 15 vol. % of H2O leads to a little decrease of CO conversion at the temperature range of 100-120 °C, which is proposed to be caused by capillary wetting of water in the micro-pores of carbon nano-tubes. As the reaction temperature is higher, adding water can improve CO conversion. The characterization results indicate that platinum species are in nano-particles uniformly dispersed on the carbon nano-tubes surface. There are two kinds of nickel species, one is interacted with platinum and likely to form Pt-Ni alloy in reduction process, the other is much highly dispersed on carbon nano-tubes and strongly interacted with the supports. The high activity of the catalysts is attributed to the interaction between Pt and Ni with the formation of Pt-Ni alloy.  相似文献   

13.
Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Aviation emission of gas phase pollutants and particulate matter contribute to global radiative forcing and regional air quality degradation near airports. It is important to understand the formation and time evolution of these pollutants inside aircraft engines to design strategies for emission reduction. A physics and chemistry based zero-dimensional (0D) gas parcel model with detailed jet fuel chemistry and soot microphysics has been developed to predict the time evolution, formation history, and emission index (EI) of key combustion gases and size-resolved soot particles of an aircraft engine. The model was applied to a CFM56-2-C1 aircraft engine for idle operating condition, for which comprehensive measured data from the Aircraft Particle Emissions eXperiment (APEX) campaign are available. The measured EI data of four major pollutants, including CO, NOx (NO + NO2), total hydrocarbon (HC) mass, and soot mass, were used to optimize the model parameters. The model predicts the time evolution of concentration of CO, NOx, HC, soot size distribution, CO2, H2O, SO2, NO, NO2, HONO, HNO3, SO3, H2SO4, O2, H, H2, O, OH, HO2, H2O2, and some HC species in the combustor and turbine. Reasonable agreement was found between the simulations and the measurements. It was found for idle operating condition that, for most of the combustion products, concentrations did not change significantly in the turbine and nozzle, however, HONO, H2SO4, and HO2 concentrations did change by more than a factor of 10, while NOx, NO, NO2, O, OH, soot particle mass and soot particle number by less than a factor of 2. The developed model is computationally efficient and can be used to, study detailed chemical and microphysical processes during combustion, investigate the effects of different fuel compositions and operating conditions on aircraft emissions, and assist air quality study near aircraft emission sources.  相似文献   

15.
This paper used the opposed-flow flame model and GRI 3.0 mechanism to investigate NO emission characteristics of H2-rich and H2-lean syngas under diffusion and premixed conditions, respectively, and analyzed influences of adding H2O, CO2 and N2 on NO formation from the standpoint of thermodynamics and reaction kinetics. For diffusion flames, thermal route is the dominant pathway to produce NO, and adding N2, H2O and CO2 shows a decreasing manner in lowering NO emission. The phenomenon above is more obvious for H2-rich syngas because it has higher flame temperature. For premixed flames, adding CO2 causes higher NO concentration than adding H2O, because adding CO2 produces more O radical, which promotes formation of NO through NNH + O = NH + NO, NH + O = NO + H and reversed N + NO = N2 + O. And in burnout gas, thermal route is the dominant way for NO formation. Under this paper's conditions, adding N2 increases the formation source of NO as well as decreases the flame temperature, and it reduces the NO formation as a whole. In addition, for H2-lean syngas and H2-rich syngas with CO2 as the diluent, N + CO2 = NO + CO plays as an important role in thermal route of NO formation.  相似文献   

16.
Enhanced NO2 production (without raising total NOx) in a diesel engine combustion chamber can improve the performance of several catalytic aftertreatment systems. Thus this can facilitate a further reduction in key regulated emissions such as nitrogen oxides (NOx) and particulate matter (PM) emissions. The oxidation of NO to NO2 is an important intermediate step involved in all current aftertreatment systems that are designed for NOx and PM catalytic removal. The performance of both NOx control systems and catalysed particulate filters depend highly on the NO2 concentration. In this work we have examined the influence of using hydrogen (H2) and simulated reformate (H2, CO and EGR gases) as a supplement to diesel fuel on NO2 production. In actual engine applications a reformer will be integrated within the engine EGR system. This will not only provide the engine with recirculated exhaust gas (i.e. EGR), but will enrich it with H2 and CO.  相似文献   

17.
Recently, biodiesel has become more attractive since it is made from renewable resources and also for the fact that the resources of fossil fuels are diminishing day by day. This study compares combustion of B5, B10, B20, B50, B80 and B100 with petroleum diesel over wide input air flows at two energy levels in an experimental boiler. The comparison is made in terms of combustion efficiency and flue gas emissions (CO, CO2, NOX, and SO2) and influence of air flow at two energy levels 219 kJ/h and 249 kJ/h is studied. The findings show that at higher level energy diesel efficiency was a little higher than that of biodiesel, but at lower level biodiesels are efficient than diesel. Except B10, Biodiesel and other blends emitted less pollutant CO, SO2 and CO2 than diesel. B10 emitted lower CO2 and NOX, but emitted higher SO2 than diesel. Despite studies reporting an increase in the NOX level resulting from burning of biodiesel over conventional petroleum diesel fuels in engines, our findings indicated at the second energy level a reduction in the NOX level in the flue gases resulting from burning of biodiesel.  相似文献   

18.
19.
《能源学会志》2020,93(4):1305-1312
Oxy-combustion is one of the most promising technology for CO2 capture in coal-fired power plants. However, under oxy-combustion conditions, the concentrations of acid gas species are significantly increased due to the introduction of the flue gas recycle, which aggravates the high-temperature corrosion of heat exchanger materials in boilers. In this study, the early-stage high-temperature corrosion (0–16 h) of two representative water-wall tube materials (20G, 12Cr1MoV) is experimentally tested in a lab-scale furnace with the simulated oxy-combustion atmosphere. The effects of material, temperature, CO2, H2O, SO2, H2S and CO atmospheres on high-temperature corrosion behaviors is investigated. The micro-morphologies and compositions of corrosion layers are characterized by scanning electron microscope with energy dispersive X-ray spectra (SEM-EDS) and X-ray diffraction (XRD). Kinetic analysis shows that the high concentration of CO2 accelerates high-temperature corrosion of water wall materials. In the simulated oxy-fuel combustion atmosphere (CO2/O2/SO2), the mass gain rate can be enhanced by 10%–30% compared to the conventional air combustion atmosphere (N2/O2/SO2), and the major composition of oxide scale is magnetite. In a reducing oxy-fuel atmosphere (CO2/CO/SO2/H2S), the major components of oxide scale are magnetite and ferrous sulfide. The high concentration of moisture in the atmosphere accelerated the corrosion rate by 10–30%. For both model alloys, the corrosion kinetics obey the parabolic law. Water-wall tube material 12Cr1MoV appears superiority in corrosion resistance compared with 20G material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号