首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Butanol (sC4H9OH) pyrolysis has been studied in a flow reactor with the synchrotron vacuum ultraviolet photoionization mass spectrometry combined with the molecular-beam sampling technique. The pyrolysis species were identified and their mole fractions were determined. Four pressures of 5, 30, 150 and 760 Torr were selected to study the pressure dependence of 2-butanol pyrolysis chemistry. The temperature- and pressure-dependent rate constants of unimolecular reactions of 2-butanol were calculated with the RRKM/Master Equation method. With the help of theoretical calculations, a detailed kinetic model consisting of 160 species and 1038 reactions was developed to simulate the 2-butanol pyrolysis. It is concluded that the mole fractions of pyrolysis species are very sensitive to the 2-butanol unimolecular reaction rates. To enhance the accuracy, the model is further validated by the species profiles in shock tube pyrolysis, a rich laminar premixed flame, oxidation data from jet-stirred reactor, ignition delay times, and laminar flame speed. Good agreements between the predicted and measured results were obtained.  相似文献   

2.
The first reaction mechanism for iso-butanol (372 species and 8723 reversible elementary reactions) pyrolysis and combustion that includes pressure dependent kinetics and proposes reaction pathways to soot precursors has been automatically generated using the open-source software package RMG. High-pressure reaction rate coefficients for important hydrogen abstraction reactions from iso-butanol by hydrogen, methyl and HO2 were calculated using quantum chemistry at the CBS-QB3 level. The mechanism was validated with recently published iso-butanol combustion experiments as well as new pyrolysis speciation data under diluted and undiluted conditions from 900 to 1100 K at 1.72 atm representative of fuel rich combustion conditions. Sensitivity and rate of production analysis revealed that the overall good agreement for the pyrolysis species, and in particular for the soot precursors like benzene, toluene and 1,3-cyclopentadiene, depends strongly on pressure dependent reactions involving the resonantly stabilized iso-butenyl radical. Laminar flame speed, opposed flow diffusion flame speciation profiles, and autoignition are also well-captured by the model. The agreement with speciation profiles for the jet-stirred reactor could be improved, in particular for temperatures lower than 850 K. Flux and sensitivity analysis for iso-butanol consumption revealed that this is primarily caused by uncertainty in iso-butanol + OH, iso-butanol + HO2 and the low temperature peroxy chemistry rates. Further theoretical and quantum chemical studies are needed in understanding these rates to completely predict the combustion behavior of iso-butanol using detailed chemistry.  相似文献   

3.
M. Crochet 《Combustion and Flame》2010,157(11):2078-2085
The autoignition chemistry of lean n-propylcyclohexane/“air” mixtures (? = 0.3, 0.4, 0.5) was investigated in a rapid compression machine at compressed gas temperatures ranging from 620 to 930 K and pressures ranging from 0.45 to 1.34 MPa. Cool flame and ignition delay times were measured. Cool flame delay times were found to follow an Arrhenius behavior, and a correlation including pressure and equivalence ratio dependences was deduced. The present ignition delay data were compared with recent experimental results and simulations from the available thermokinetic models in the literature. Negative temperature coefficient zones were observed when plotting ignition delay times versus compressed gas temperature. The oxidation products were identified and quantified during the ignition delay period. Formation pathways for the C9 bicyclic ethers and conjugate alkenes are proposed. The experimental data provide an extensive database to test detailed thermokinetic oxidation models.  相似文献   

4.
Yu Zhang 《Combustion and Flame》2010,157(10):1816-1824
The oxidation of neat 1-butanol and a mixture of n-heptane and 1-butanol was studied in a modified CFR engine at an equivalence ratio of 0.25 and an intake temperature of 120 °C. The engine compression ratio was gradually increased from the lowest point to the point where significant high temperature heat release was observed. Heat release analyses showed that no noticeable low temperature heat release behavior was observed from the oxidation of neat 1-butanol while the n-heptane/1-butanol mixture exhibited pronounced cool flame behavior. Species concentration profiles were obtained via GC-MS and GC-FID/TCD. Quantitative analyses of the reaction products from the oxidation of neat 1-butanol indicate that 1-butanol is consumed mainly through H-atom abstraction. Among the H-atom abstraction reactions, it is observed that the H-atom abstraction from the α-carbon of 1-butanol is particularly favored. The investigation on the oxidation of the mixture of n-heptane/1-butanol showed that the oxidation of 1-butanol is facilitated at low temperatures through the radical pool generated from the oxidation of n-heptane.  相似文献   

5.
Several classes of endophytic fungi have been recently identified that convert cellulosic biomass to a range of ketones and other oxygenated molecules, which are potentially viable as biofuels, but whose oxidation chemistry is not yet well understood. In this work, we present a predictive kinetics model describing the pyrolysis and oxidation of diisopropyl ketone (DIPK) that was generated automatically using the Reaction Mechanism Generator (RMG) software package. The model predictions are evaluated against three experiments that cover a range of temperatures, pressures, and oxygen concentrations: (1) Synchrotron photoionization mass spectrometry (PIMS) measurements of pyrolysis in the range 800–1340 K at 30 Torr and 760 Torr; (2) Synchrotron PIMS measurements of laser photolytic Cl-initiated oxidation from 550 K to 700 K at 8 Torr; and (3) Rapid-compression machine measurements of ignition delay between 591 K and 720 K near 10 bar. Improvements made to the model parameters, particularly in the areas of hydrogen abstraction from the initial DIPK molecule and low-temperature peroxy chemistry, are discussed. Our ability to automatically generate this model and systematically improve its parameters without fitting to the experimental results demonstrates the usefulness of the predictive chemical kinetics paradigm.  相似文献   

6.
Thermodynamic analysis of steam reforming of different oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol) with and without CaO as CO2 sorbent is carried out to determine favorable operating conditions to produce high-quality H2 gas. The results indicate that the sorption enhanced steam reforming (SESR) is a fuel flexible and effective process to produce high-purity H2 with low contents of CO, CO2 and CH4 in the temperature range of 723-873 K. In addition, the separation of CO2 from the gas phase greatly inhibits carbon deposition at low and moderate temperatures. For all the oxygenated hydrocarbons investigated in this work, thermodynamic predictions indicate that high-purity hydrogen with CO content within 20 ppm required for proton exchange membrane fuel cell (PEMFC) applications can be directly produced by a single-step SESR process in the temperature range of 723-773 K at pressures of 3-5 atm. Thus, further processes involving water-gas shift (WGS) and preferential CO oxidation (COPROX) reactors are not necessary. In the case of ethanol and methanol, the theoretical findings of the present analysis are corroborated by experimental results from literature. In the other cases, the results could provide an indication of the starting point for experimental research. At P = 5 atm and T = 773 K, it is possible to obtain H2 at concentrations over 97 mol% along with CO content around 10 ppm and a thermal efficiency greater than 76%. In order to achieve such a reformate composition, the optimized steam-to-fuel molar ratios are 6:1, 9:1, 12:1 and 4:1 for ethanol, glycerol, n-butanol and methanol, respectively, with CaO in the stoichiometric ratio to carbon atom.  相似文献   

7.
Ethylamine (CH3CH2NH2) pyrolysis and oxidation were studied using laser absorption behind reflected shock waves. For ethylamine pyrolysis, NH2 time-histories were measured in 2000 ppm ethylamine/argon mixtures. For ethylamine oxidation, ignition delay times, and NH2 and OH time-histories were measured in ethylamine/O2/argon mixtures. Measurements covered the temperature range of 1200–1448 K, with pressures near 0.85, 1.35 and 2 atm, and fuel mixtures with equivalence ratios of 0.75, 1 and 1.25 in 0.2%, 0.8% and 4% O2/argon. Simulations using the recent Li et al. mechanism gave significantly shorter ignition delay times and higher intermediate radical species concentrations than the experimental results. The reaction rate constants for the two major ethylamine decomposition pathways were modified in the Li et al. mechanism to improve the prediction of the time-histories of NH2 and OH in ethylamine pyrolysis. In addition, recommendations from recent studies of ethylamine + OH reactions were implemented. With these modifications, the Modified Li et al. mechanism provides significantly improved agreement with the species time-history measurements and the ignition delay time data.  相似文献   

8.
Hydrogen sulfide is a common impurity that can greatly change the combustion properties of fuels, even when present in small concentrations. However, the combustion chemistry of H2S is still poorly understood, and this lack of understanding subsequently leads to difficulties in the design of emission-control and energy-production processes. During this study, ignition delay times were measured behind reflected shock waves for mixtures of 1% H2/1% O2 diluted in Ar and doped with various concentration of H2S (100, 400, and 1600 ppm) over large pressure (around 1.6, 13, and 33 atm) and temperature (1045–1860 K) ranges. Results typically showed a significant increase in the ignition delay time due to the addition of H2S, in some cases by a factor of 4 or more over the baseline mixtures with no H2S. The magnitude of the increase is highly dependent on the temperature and pressure. A detailed chemical kinetics model was developed using recent, up-to-date detailed-kinetics mechanisms from the literature and by changing a few reaction rates within their reported error factor. This updated model predicts well the experimental data obtained during this study and from the shock-tube literature. However, flow reactor data from the literature were poorly predicted when H2S was a reactant. This study highlights the need for a better estimation of several reaction rates to better predict H2S oxidation chemistry and its effect on fuel combustion. Using the kinetics model for sensitivity analyses, it was determined that the decrease in reactivity in the presence of H2S is because H2S initially reacts before the H2 fuel does, mainly through the reaction H2S + H ? SH + H2, thus taking H atoms away from the main branching reaction H + O2 ? OH + O and inhibiting the ignition process.  相似文献   

9.
The experimental study of the oxidation of cyclohexane has been performed in a jet-stirred reactor at temperatures ranging from 500 to 1100 K (low- and intermediate temperature zones including the negative temperature-coefficient area), at a residence time of 2 s and for dilute mixtures with equivalence ratios of 0.5, 1, and 2. Experiments were carried out at quasi-atmospheric pressure (1.07 bar). The fuel and reaction product mole fractions were measured using online gas chromatography. A total of 34 reaction products have been detected and quantified in this study. Typical reaction products formed in the low-temperature oxidation of cyclohexane include cyclic ethers (1,2-epoxycyclohexane and 1,4-epoxycyclohexane), 5-hexenal (formed from the rapid decomposition of 1,3-epoxycyclohexane), cyclohexanone, and cyclohexene, as well as benzene and phenol. Cyclohexane displays high low-temperature reactivity with well-marked negative temperature-coefficient (NTC) behavior at equivalence ratios 0.5 and 1. The fuel-rich system (? = 2) is much less reactive in the same region and exhibits no NTC. To the best of our knowledge, this is the first jet-stirred reactor study to report NTC in cyclohexane oxidation. Laminar burning velocities were also measured by the heated burner method at initial gas temperatures of 298, 358, and 398 K and at 1 atm. The laminar burning velocity values peak at ? = 1.1 and are measured as 40 and 63.1 cm/s for Ti = 298 and 398 K, respectively. An updated detailed chemical kinetic model including low-temperature pathways was used to simulate the present (jet-stirred reactor and laminar burning velocity) and literature experimental (laminar burning velocity, rapid compression machine, and shock tube ignition delay times) data. Reasonable agreement is observed with most of the products observed in our reactor, as well as the literature experimental data considered in this paper.  相似文献   

10.
Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors’ knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air.  相似文献   

11.
The present study involves the evaluation of dimethoxymethane (DMM) (formaldehyde dimethyl acetal, or methylal) and trimethoxymethane (TMM) (trimethyl orthoformate) in direct oxidation liquid-feed fuel cells as novel oxygenated fuels. We have demonstrated that sustained oxidation of TMM at high current densities can be achieved in half-cells and liquid-feed polymer electrolyte fuel cells 1, 2 and 3. In the present study, the performance of dimethoxymethane and trimethoxymethane was compared with that of methanol in 2″ × 2″ (25 cm2 electrode area) and 4″ × 6″ (160 cm2 electrode area) direct oxidation fuel cells. The impact of various parameters upon cell performance, such as cell temperature, anode fuel concentration, cathode fuel pressure and flow (O2 and air), was investigated. Fuel crossover rates in operating fuel cells were also measured for methanol, DMM, and TMM and characterized in terms of concentration and temperature effects. Although DMM and more particularly TMM may present some logistical advantages over that of methanol, such as possessing a higher boiling point, higher flash point, and lower toxicity, the overall performance was observed to be inferior to that of methanol under typical fuel cell operating conditions.  相似文献   

12.
13.
The chemical compositions of four low-pressure premixed flames of iso-butanol are investigated with an emphasis on assessing the predictive capabilities of an automatically generated combustion chemistry model. This kinetic model had been extensively tested against earlier experimental data [S.S. Merchant, E.F. Zanoelo, R.L. Speth, M.R. Harper, K.M. Van Geem, W.H. Green, Combust. Flame (2013), http://dx.doi.org/10.1016/j.combustflame.2013.04.023.] and also shows impressive capabilities for predicting the new flame data presented here. The new set of data consists of isomer-resolved mole fraction profiles for more than 40 species in each of the four flames and provides a comprehensive benchmark for testing of any combustion chemistry model for iso-butanol. Isomer-specificity is achieved by analyzing flames, which are burner-stabilized at equivalence ratios of ? = 1.0–1.5 and at pressures between 15 and 30 Torr, with molecular-beam mass spectrometry and single-photon ionization by tunable vacuum-ultraviolet synchrotron radiation. Predictions of the C2H4O, C3H6O, and C4H8O enol–aldehyde–ketone isomers are improved compared to the earlier work by Hansen et al. [N. Hansen, M. R. Harper, W. H. Green, Phys. Chem. Chem. Phys. 13 (2011) 20262-20274] on similar n-butanol flames. A reaction path analysis identifies prominent fuel-consumption and oxidation sequences. Almost all of the species mole fraction data reported here are predicted within the measurement uncertainties of a factor of two to three. Some significant differences with previous published models are highlighted.  相似文献   

14.
The gas-phase combustion of fuel-lean methane/air premixtures over platinum was investigated experimentally and numerically in a laminar channel-flow catalytic reactor at pressures 1 bar?p?16 bar. In situ, spatially resolved one-dimensional Raman and planar laser induced fluorescence (LIF) measurements over the catalyst boundary layer were used to assess the concentrations of major species and of the OH radical, respectively. Comparisons between measured and predicted homogeneous (gaseous) ignition distances have led to the assessment of the validity of various elementary gas-phase reaction mechanisms. At low temperatures (900 K?T?1400 K) and fuel-to-air equivalence ratios (0.05?φ?0.50) typical to catalytic combustion systems, there were substantial differences in the performance of the gaseous reaction mechanisms originating from the relative contribution of the low- and the high-temperature oxidation routes of methane. Sensitivity analysis has identified the significance of the chain-branching reaction CHO + M = CO + H + M on homogeneous ignition, particularly at lower pressures. It was additionally shown that C2 chemistry could not be neglected even at the very fuel-lean conditions pertinent to catalytic combustion systems. A gas-phase reaction mechanism validated at 6 bar?p?16 bar has been extended to 1 bar?p?16 bar, thus encompassing all catalytic combustion applications. A reduced gas-phase mechanism was further derived, which when used in conjunction with a reduced heterogeneous (catalytic) scheme reproduced the key catalytic and gaseous combustion characteristics of the full hetero/homogeneous reaction schemes.  相似文献   

15.
The electrooxidation properties of methanol and 2-propanol, which are both promising candidates for direct alcohol fuel cells (DAFCs), have been studied under elevated temperature and pressurized conditions. Sputter-deposited Pt and Pt–Ru electrodes were well-characterized and utilized for the electrochemical measurement of the alcohol oxidation at 25–100 °C. The Pt electrode prepared at 600 °C had a flat surface, and the Pt–Ru formed an alloy. The electrochemical measurements were carried out in a gas-tight cell under elevated temperature, which accompanies the pressurized condition. This is a representative example of the DAFC rising temperature operation. As a result, at 25 °C, the onset potential of the 2-propanol oxidation is about 400 mV more negative than that of the methanol oxidation, and current density of the 2-propanol oxidation exceeds that of the methanol oxidation. Conversely, at 100 °C, the methanol oxidation current density overcomes that of 2-propanol, and the onset potentials of the two are almost the same. The highest current density for the methanol oxidation is obtained at the Pt:Ru = 50:50 electrode, whereas at the Pt:Ru = 35:65 for the 2-propanol oxidation. A Tafel plot analysis was employed to investigate the reaction mechanism. For the methanol oxidation, the number of electrons transferred during the rate-determining process is estimated to be 1 at 25 °C and 2 at 100 °C. This suggests that the methanol reaction mechanism differs at 25 and 100 °C. In contrast, the rate-determining process of the 2-propanol oxidation at 25 and 100 °C was expected to be 1-electron transfer which accompanies the proton-elimination reaction to produce acetone. Consequently, it is deduced that methanol and 2-propanol have an advantage under the rising temperature and room temperature operation, respectively.  相似文献   

16.
The temporal variation of OH (A2Σ+) chemiluminescence in hydrogen oxidation chemistry has been studied in a shock tube behind reflected shock waves at temperatures of 1400-3300 K and at a pressure of 1 bar. The aim of the present work is to obtain a validated reaction scheme to describe OH formation in the H2/O2 system. Temporal OH emission profiles and ignition delay times for lean and stoichiometric H2/O2 mixtures diluted in 97-98% argon were obtained from the shock-tube experiments. Based on a literature review for the hydrogen combustion system, the key reaction considered was H + O + M = OH + M (R1). The temperature dependence of the measured peak OH emission from the shock tube and the peak OH concentration from a homogeneous closed reactor model are compared. Based on these results a reaction rate coefficient of k1 = (1.5 ± 0.4) × 1013 exp(−25 kJ mol−1/RT) cm6 mol−2 s−1 was found for the forward reaction (R1) which is slightly higher than the rate coefficient suggested by Hidaka et al. (1982). The comparison of measured and simulated absolute concentrations shows good agreement. Additionally, a one-dimensional laminar premixed low-pressure flame calculation was performed for where absolute OH concentration measurements have been reported by Smith et al. (2005). The absolute peak OH concentration is fairly well reproduced if the above mentioned rate coefficient is used in the simulation.  相似文献   

17.
Chemical reactions of ground-state species strongly govern the formation of excited-state species, including OH* and CH*, which are commonly used to determine ignition delay times of fuels. With well-characterized chemiluminescence rates embedded in chemical kinetics mechanisms, time histories of excited-state species can aid in identifying influential ground-state reactions which are important to processes such as ignition delay time. Placing emphasis on the high-temperature regime, improvements were made to a detailed chemical kinetics mechanism of n-nonane oxidation developed previously by the authors. Using characteristic features of OH* time histories measured in shock-tube experiments as a metric, detailed model analyses were performed over a broad range of conditions: T > 1100 K, 1.5 < P (atm) < 10.5, ? = 0.5, 1.0, 2.0. OH* time history measurements, particularly under fuel-rich conditions (? = 2.0), displayed a two-peak behavior, with the first peak occurring within the first 5–10 μs after reflected-shock passage, and the second, wider peak corresponding to main oxidation and ignition. In the initial version of the kinetics mechanism, the two peaks at rich conditions were predicted to merge, blurring the main ignition process prior to the second peak. The work herein presents modifications to the initial chemical kinetics mechanism which led to improved agreement between measurements and model-based predictions, with emphasis on the fuel-rich condition. To this end, the predicted shapes of the OH* time histories were crucial to matching the two-peak behavior detected in the experiments. A first-order resistance–capacitance (RC) model of the experimental time response of the optical setup was developed and shown to reproduce the measured time dependence and peak behavior that are vital for matching the OH* behavior near time-zero. The RC model processes the kinetics predictions in a way that allows the kinetics model predictions to directly correspond to the true conditions in the experiment. In moving towards improved agreement in OH*-profile predictions for all conditions, improvements in the kinetics mechanism were also realized at the two leaner equivalence ratios (? = 1.0 and 0.5), both in terms of OH* profile shape and ignition delay times. Model calculations of oxidation processes indicate that reactions leading to the first OH* peak originate from fuel homolysis. The resulting (alkyl) radicals lead to the formation of methyl which then, through a series of H-abstraction reactions, leads to the production of the methylidyne radical (CH) that reacts with molecular oxygen to form OH*. The oxidation processes near time-zero terminate, in part, due to methyl depletion by methylene forming C2H4 + H2. In addition to the insight gained on n-nonane ignition and oxidation chemistry, the present study highlights the utility of correctly interpreted OH* measurements for inference of kinetic information other than ignition delay times.  相似文献   

18.
Ignition delay times behind reflected shock waves are strongly sensitive to variations in temperature and pressure, yet most current models of reaction kinetics do not properly account for the variations that are often present in shock tube experiments. Particularly at low reaction temperatures with relatively long ignition delay times, substantial increases in pressure and temperature can occur behind the reflected shock even before the main ignition event, and these changes in thermodynamic conditions of the ignition process have proved difficult to interpret and model. To obviate such pressure increases, we applied a new driven-gas loading method that constrains the volume of reactive gases, thereby producing near-constant-pressure test conditions for reflected shock measurements. Using both conventional operation and this new constrained-reaction-volume (CRV) method, we have collected ignition delay times for 1-butanol/O2/N2 mixtures over temperatures between 716 and 1121 K and nominal pressures of 20 and 40 atm for equivalence ratios of 0.5, 1.0, and 2.0. The equivalence ratio dependence of 1-butanol ignition delay time was found to be negative when the oxygen concentration was fixed, but positive when the fuel concentration was held constant. Ignition delay times with strong pre-ignition pressure increases in conventional-filling experiments were found to be significantly shorter than those where these pressure increases were mitigated using the CRV strategy. The near-constant-pressure ignition delay times provide a new database for low-temperature 1-butanol mechanism development independent of non-idealities caused by either shock attenuation or pre-ignition perturbations. Comparisons of these near-constant-pressure measurements with predictions using several reaction mechanisms available in the literature were performed. To our knowledge this work is first of its kind that systematically provides accurate near-constant-enthalpy and -pressure target data for chemical kinetic modeling of undiluted fuel/air mixtures at engine relevant conditions.  相似文献   

19.
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.  相似文献   

20.
Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号