首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A two-dimensional (2-D) array of 256 X 256 = 65,536 elements, with total area 4 X 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single-layer, flex circuits that, compared to multilayer flex circuits, are simpler to design, cheaper to manufacture, and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time-acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving -6 dB and -20 dB beamwidths of less than 0.2 and 0.5 mm, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with -6 dB and -20 dB beamwidths in the order of 0.4 and 0.8 mm, respectively.  相似文献   

2.
Sigma-delta (ΣΔ) modulation allows delay resolution in ultrasound beamformers to be achieved by simple clock cycle delays applied to the undecimated bitstream, greatly reducing the complexity of the signal processing and the number of bits in the datapath. The simplifications offered by this technique have the potential for low power and portable operation in advanced systems such as 3-D and color Doppler imagers. In this paper, an architecture for a portable, real-time, 3-D sparse synthetic aperture ultrasound beamformer based on ΣΔ modulation is presented, and its simulated performance is analyzed. Specifically, with a 65-element linear phased array and three transmit events, this architecture is shown to achieve a 1.1° beamwidth, a -54-dB secondary lobe level, and a theoretical frame rate of 1700 frames/s at λ/64 delay resolution using a second-order low pass ΣΔ modulator. Finally, a technique for modifying the proposed multi-beam architecture to allow improved analog-to-digital (A/D) resolution by premodulating the input signal for bandpass ΣΔ modulation is also presented  相似文献   

3.
Peak acoustic power limits the signal-to-noise ratio (SNR) of real-time ultrasound images. For most conventional scan formats, however, the average power is well below heating limits. This means the SNR can be significantly increased using coded excitation. A coded system transmits a broadband, temporally elongated excitation pulse with a finite time-bandwidth product. The received signal must be decoded to produce an imaging pulse with improved SNR resulting from the higher average power in the elongated excitation. Decoding can produce significant range side lobes, however, greatly reducing image quality. All practical coding designs, therefore, represent a trade-off between SNR gain and range side lobes. A specific coding scheme appropriate for synthetic aperture imaging is presented. A 14.5 dB SNR improvement with acceptable range side lobes is demonstrated on a forward-looking imaging system appropriate for intravascular applications.  相似文献   

4.
In previous work, we developed two generations of a real-time rectilinear volumetric scanner operating at 5 MHz for abdominal, breast, or vascular imaging using a Mills cross two-dimensional (2-D) array and a rectilinear periodic 2-D array. To improve spatial resolution performance and sensitivity, we developed a new design using 4:1 receive mode multiplexing. With 4:1 multiplexing, the new 65,000 element 2-D array has 4 x 256 = 1024 receivers so that 256 receivers can be used on any image line. The two major benefits of using receive mode multiplexing are an increase in receive sensitivity due to a greater number of receive elements, and a decrease in grating lobe and clutter levels due to increased receive element density. Theoretical simulations and analysis show an increase of about 13 dB in sensitivity compared to our previous work. With these encouraging results, a new 65,000 element 5-MHz, 2-D array having 1024 receivers and 169 transmitters was prototyped. In addition, the multiplexer and control circuitry were designed, built, and interfaced with both the transducer and volumetric scanner. Images of tissue-mimicking phantoms and in vivo targets were obtained. Using a spherical cyst phantom, experimental results showed a +12 dB improvement in signal-to-noise ratio and a +6 dB improvement in contrast compared to our previous work.  相似文献   

5.
A real-time 3-D imaging system requires the development of a beamformer that can generate many beams simultaneously. In this paper, we discuss and evaluate a suitable synthetic aperture beamformer. The proposed beamformer is based on a pipelined network of high speed digital signal processors (DSP). By using simple interpolation-based beamforming, only a few calculations per pixel are required for each channel, and an entire 2-D synthetic aperture image can be formed in the time of one transmit event. The performance of this beamformer was explored using a computer simulation of the radiation pattern. The simulations were done for a full 64-element array and a sparse array with the same receive aperture but only five transmit elements. We assessed the effects of changing the sampling rate and amplitude quantization by comparing the relative levels of secondary lobes in the radiation patterns. The results show that the proposed beamformer produces a radiation pattern equivalent to a conventional beamformer using baseband demodulation, provided that the sampling rate is approximately 10 times the center frequency of the transducer (34% bandwidth pulse). The simulations also show that the sparse array is not significantly more sensitive to delay or amplitude quantization than the full array.  相似文献   

6.
A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.  相似文献   

7.
Optical sparse aperture imaging   总被引:2,自引:0,他引:2  
The resolution of a conventional diffraction-limited imaging system is proportional to its pupil diameter. A primary goal of sparse aperture imaging is to enhance resolution while minimizing the total light collection area; the latter being desirable, in part, because of the cost of large, monolithic apertures. Performance metrics are defined and used to evaluate several sparse aperture arrays constructed from multiple, identical, circular subapertures. Subaperture piston and/or tilt effects on image quality are also considered. We selected arrays with compact nonredundant autocorrelations first described by Golay. We vary both the number of subapertures and their relative spacings to arrive at an optimized array. We report the results of an experiment in which we synthesized an image from multiple subaperture pupil fields by masking a large lens with a Golay array. For this experiment we imaged a slant edge feature of an ISO12233 resolution target in order to measure the modulation transfer function. We note the contrast reduction inherent in images formed through sparse aperture arrays and demonstrate the use of a Wiener-Helstrom filter to restore contrast in our experimental images. Finally, we describe a method to synthesize images from multiple subaperture focal plane intensity images using a phase retrieval algorithm to obtain estimates of subaperture pupil fields. Experimental results from synthesizing an image of a point object from multiple subaperture images are presented, and weaknesses of the phase retrieval method for this application are discussed.  相似文献   

8.
Shadowing of an imaging aperture occurs when ultrasound beams are partially obstructed by an acoustically hard tissue, e.g., bone tissue. This effect leads to reduced resolution and, in some cases, geometrical distortion. In this paper, we initially introduce a binary apodization model to simulate effects of the shadowing on the point scatterers located close to a bone structure. Further, in a simulation study and an in vitro experiment, the minimum variance (MV) beamforming method is employed to image scatterers partly located in the shadow of bone. We show that the MV beamformer can result in a distorted image when the imaging aperture is highly obstructed by the bone structure. This distortion can be seen as an apparent lateral shift of the point spread function and a decrease in the sensitivity. Based on the signal power across the aperture, we adaptively determine the shadowed elements and discard their corresponding data from the covariance matrix to improve the MV beamformer performance. This modified MV beamformer can retain the resolution and compensate for the apparent lateral shifting and signal attenuation for the shadowed point scatterers.  相似文献   

9.
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.  相似文献   

10.
The drawbacks of the multifrequency automatic focusing technique (MF-AFT) have been eased considerably when the scanned-frequency signals are transmitted simultaneously in a pulse. While the focusing capabilities of the MF-AFT are maintained, substantial reduction in data processing is obtained when the new procedure is used. In addition, the derived pulse can be tailored to further enhance the quality of the image produced by this new procedure. Simulation results are included to demonstrate the focusing capabilities of the procedure for both two- and three-dimensional objects  相似文献   

11.
Synthetic aperture focusing using a virtual source was used previously to increase the penetration and to extend the depth of focus in high-frequency ultrasonic imaging. However, the performance of synthetic aperture focusing is limited by its high sidelobes. In this paper, an adaptive weighting technique based on a focusing-quality index is introduced to suppress the sidelobes. The focusing-quality index is derived from the spatial spectrum of the scan-line data along the mechanical scan direction (i.e., the synthetic aperture direction) after focusing delays relative to the virtual source have been applied. The proposed technique is of particular value in high-frequency ultrasound in which dynamic focusing using array transducers is not yet possible. Experimental ultrasound data from a 50-MHz imaging system with a single-crystal transducer (f-number=2) are used to demonstrate the efficacy of the proposed technique on both wire targets and speckle-generating objects. An in vivo experiment also is performed on a mouse to further demonstrate the effectiveness. Both 50-MHz fundamental imaging and 50-MHz tissue harmonic imaging are tested. The results clearly demonstrate the effectiveness in sidelobe reduction and background-noise suppression for both imaging modes. The principles, experimental results, and implementation issues of the new technique are described in this paper.  相似文献   

12.
We have previously developed 2-D array transducers for many real-time volumetric imaging applications. These applications include transducers operating up to 7 MHz for transthoracic imaging, up to 15 MHz for intracardiac echocardiography (ICE), 5 MHz for transesophageal echocardiography (TEE) and intracranial imaging, and 7 MHz for laparoscopic ultrasound imaging (LUS). Now we have developed a new generation of miniature ring-array transducers integrated into the catheter deployment kits of interventional devices to enable real-time 3-D ultrasound scanning for improved guidance of minimally invasive procedures. We have constructed 3 new ring transducers. The first consists of 54 elements operating at 5 MHz. Typical measured transducer element bandwidth was 25%, and the 50 Ohm round trip insertion loss was -65 dB. Average nearest neighbor cross talk was -23.8 dB. The second is a prototype 108-element transducer operating at 5 MHz. The third is a prototype 108-element ring array with a transducer center frequency of 8.9 MHz and a -6 dB bandwidth of 25%. All transducers were integrated with an 8.5 French catheter sheath of a Cook Medical, Inc. vena cava filter deployment device.  相似文献   

13.
A frequency-domain method for implementing the synthetic aperture focusing technique is developed and demonstrated using computer simulation. As presented, the method is well suited to reconstructing ultrasonic reflectivity over a volumetric region of space using measurements made over an adjacent two-dimensional aperture. Extensive use is made of both one- and two-dimensional Fourier transformations to perform the temporal and spatial correlation required by the technique, making the method well suited to general-purpose computing hardware. Results are presented demonstrating both the lateral and axial resolution achieved by the method. The effect of limiting the reconstruction bandwidth is also demonstrated.  相似文献   

14.
15.
合成孔径声呐Chirp Scaling成像算法   总被引:1,自引:3,他引:1  
在合成孔径声呐领域中经典的成像处理方法是距离-多普勒算法。距离-多普勒算法的主要缺点是在进行方位处理时需要进行距离二次脉压和在进行距离徙动校正时需要进行插值处理,这样将导致运算量迅速增加,并且降低了成像精度。而ChirpScaling算法是在二维频域中精确实现距离门徙动校正和二次距离压缩,避免了插值运算,用该算法处理了仿真点目标的回波数据,结果表明该算法既能够实现更加精确的成像又能够避免插值运算而提高运算效能。  相似文献   

16.
Directional synthetic aperture flow imaging   总被引:1,自引:0,他引:1  
A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle, and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave emissions with a number of defocused elements and a linear frequency-modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer. A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring radio frequency (RF) data from 128 elements of the array, using 8 emissions with 11 elements in each emission. A 20-micros chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60-degree flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions, and the relative standard deviation was 0.36% (0.65 mm/s). Using the same setup for purely transverse flow gave a standard deviation of 1.2% (2.1 mm/s). Variation of the different parameters revealed the sensitivity to number of lines, angle deviations, length of correlation interval, and sampling interval. An in vivo image of the carotid artery and jugular vein of a healthy 29-year-old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high-velocity precision.  相似文献   

17.
18.
Modifications were made to a commercial real-time, three-dimensional (3-D) ultrasound system for near simultaneous 3-D scanning with two matrix array transducers. As a first illustration, a transducer cable assembly was modified to incorporate two independent, 3-D intra-cardiac echo catheters, a 7 Fr (2.3 mm O.D.) side scanning catheter and a 14 Fr (4.7 mm O.D) forward viewing catheter with accessory port, each catheter using 85 channels operating at 5 MHz. For applications in treatment of atrial fibrillation, the goal is to place the sideviewing catheter within the coronary sinus to view the whole left atrium, including a pulmonary vein. Meanwhile, the forward-viewing catheter inserted within the left atrium is directed toward the ostium of a pulmonary vein for therapy using the integrated accessory port. Using preloaded, phasing data, the scanner switches between catheters automatically, at the push of a button, with a delay of about 1 second, so that the clinician can view the therapy catheter with the coronary sinus catheter and vice versa. Preliminary imaging studies in a tissue phantom and in vivo show that our system successfully guided the forward-viewing catheter toward a target while being imaged with the sideviewing catheter. The forward-viewing catheter then was activated to monitor the target while we mimicked therapy delivery. In the future, the system will switch between 3-D probes on a line-by-line basis and display both volumes simultaneously.  相似文献   

19.
Applying the Capon adaptive beamformer in medical ultrasound imaging results in enhanced resolution by improving the interference-suppressing capabilities of the array. This improvement comes at the expense of an increased computational complexity. We have investigated the application of a beamspace adaptive beamformer for medical ultrasound imaging, which can be used to achieve reduced computational complexity with performance comparable to that of the Capon beamformer. The idea behind beamspace beamforming is that, instead of using the spatial statistics of the elements in the array to differentiate between signals and interference, we use the spatial statistics of a set of orthogonal beams, which are formed in different directions. This represents a shift from element space to beamspace. Because the majority of interference in medical ultrasound imaging is constrained to a limited spatial interval due to the focused transmit beam, this latter space can be reduced to a dimension that is lower than that of element space. We show, using simulations and experimental data, that this dimension can be selected as low as 3 while still achieving performance comparable to its element space counterpart.  相似文献   

20.
The oscillating profile naturally present in ultrasound images has been shown to be extremely valuable in different applications, particularly in motion estimation. Recent studies have shown that it is possible to produce images with transverse oscillations (TOs) based on a specific type of beamforming. However, there is still a great difference between the nature of the lateral oscillations produced with current methods and the axial profile of ultrasound images. In this study, we propose to combine synthetic aperture imaging (synthetic transmit aperture, STA) using a specific beamformer in both transmit mode and receive mode combined with a heterodyning demodulation method to produce lateral radiofrequency signals (LRFs). The aim was to produce lateral signals as close as possible to conventional axial signals, which would make it possible to estimate lateral displacements with the same accuracy as in the axial direction. The feasibility of this approach was validated in simulation and experimentally on an ultrasound research platform, the Ultrasonix RP system. We show that the combination of STA and the heterodyning demodulation can divide the wavelength of the LRF signals by 4 and divide the width of the lateral envelope of the point spread function (PSF) by 2 compared with the previous approaches using beamforming in receive mode only. Finally, we also illustrate the potential of our beamforming for motion estimation compared with previous TO methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号