首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王博  孙淑华 《材料导报》2016,30(6):129-129
研究了纯铁及38CrMoAlA钢分别在500℃、0~0.4MPa压力和510℃、0~0.5MPa压力条件下的氨气渗氮行为。提高渗氮压力可显著加速气体渗氮动力学过程,纯铁在500℃和0.4 MPa下气体渗氮处理5h后渗氮层厚度(1160μm)可同比达到常规渗氮层厚度(205μm)的5倍以上,而38CrMoAlA钢经510℃和0.5 MPa压力下渗氮5h后的渗氮层厚度(400μm)几乎与常规渗氮50h所得硬化层厚度(440μm)相当。同时,纯铁及38CrMoAlA钢渗氮层中ε-Fe2-3N与γ′-Fe4N的相比例、氮势及表层硬度均随压力的提高呈现先增加后降低的变化趋势。提出了一种合金结构钢表面高强高韧渗氮层快速复合制备工艺(增压渗氮+冷轧)。与一段式常规渗氮及增压渗氮工艺相比,复合工艺处理表层硬度及韧性均较优良,尤其高剪切应力磨损条件下复合处理表层的耐磨性能最优,在20~600℃热循环处理10~300次条件下复合处理表层的耐热疲劳性能最佳。研究了42CrMo钢在既定的渗氮周期内(6h)以NH3为介质,530℃及不同压力循环次数条件下的气体渗氮行为。在渗氮温度和总时间相同条件下,循环压力气体渗氮样品化合物层随压力循环次数的增加逐渐减薄,渗氮层整体厚度随压力循环次数的增加逐渐增加,同时渗氮表层韧性随压力循环次数的增加逐渐增强。  相似文献   

2.
The behavior of gaseous nitriding on the surface nanocrystallized(SNCed) steel was investigated.The mild steel discs were SNC ed on one side by using the method of ultrasonic shot peening.The opposite side of the discs maintained the original coarse-grained condition.The gaseous nitriding was subsequently carried out at three different temperatures;460,500 and 560℃ .The compound layer growth and diffusion behavior were then studied.It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate.As a result ,nitriding time could be reduced to the half.It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.  相似文献   

3.
针对Mg-Gd-Y合金塑性较差的问题,研究了固溶态和不同温度锻造加工态高强Mg-Gd-Y合金的组织与性能。结果表明,固溶态Mg-Gd合金的晶粒尺寸不均匀,平均尺寸约225μm;当锻造加工温度为440℃和410℃时,合金中第二相的数量较多,大量弥散分布的第二相的存在可以抑制动态再结晶的形成;随着锻造加工温度的降低,Mg-Gd合金的抗拉强度和屈服强度呈现逐渐升高的趋势,在锻造加工温度为470℃时,Mg-Gd合金的断后伸长率达到最大值19.2%,降低锻造加工温度至440℃和410℃时,断后伸长率反而有所降低;固溶态Mg-Gd合金的拉伸断口呈现脆性断裂的特征;锻造加工温度为500℃的拉伸断口呈现混合断裂特征,而锻造加工温度为410℃、440℃和470℃时Mg-Gd合金的断口都呈现为韧性断裂特征。  相似文献   

4.
Abstract— The solute-rich beta titanium alloy Ti-3Al-8V-6Cr-4Mo-4Zr was subjected to 1500 bar nitrogen pressure at elevated temperatures (500–920°C), leading to a diffusion layer with a high surface hardness. Microstructural, crystallographic and compositional analyses indicate that TiN (δ) and Ti2N (ε) are formed at temperatures exceeding 815°C. The increased concentration of nitrogen, which is a potent α-stabilizer in titanium, also causes α-Ti to form near the surface. The nitriding treatment does not significantly alter the tensile properties or fatigue limit in solution heat treated material. A subsequent ageing treatment of 72 h at 440°C and 16 h at 500°C reduces toughness significantly, allowing cracks induced by nitriding to propagate more easily into the bulk. Tensile ductility and fatigue performance of aged nitrided Ti-3Al-8V-6Cr—4Mo-4Zr are thus significantly lower than in the untreated reference condition.  相似文献   

5.
F. Mahboubi  K. Abdolvahabi 《Vacuum》2006,81(3):239-243
A series of experiments have been conducted on DIN 1.6959 low-alloy steel using a 5 kVA DC plasma nitriding apparatus with the aim of elucidating the role of treatment temperature in plasma nitriding process. Treatments were carried out in 75%N2-25%H2 atmosphere of 4 mbar for 5 h at temperatures ranging from 350 to 550 °C. Optical microscopy, scanning electron microscopy, X-ray diffraction, along with surface roughness and microhardness measurements were utilized to characterize the treated samples. The depth, microstructure, hardness profile and phase constituents of the nitrided layers as well as the surface roughness of the samples were assessed as a function of treatment temperature. The results suggested that the compound layers were mostly dual phase consisting of gamma prime and epsilon iron nitride phases. Increasing treatment temperature increases compound layer and diffusion layer thicknesses. However, maximum surface hardness and roughness were found on the samples treated at 500 and 550 °C, respectively.  相似文献   

6.
Microstructural analysis of a plasmanitrided tool steel by means of metallography and X‐ray diffraction Nitriding leads to improved tribological and corrosive properties of iron alloy components. In order to study the effect of plasma nitriding parameters on the structure of compound layer and diffusion zone, a systematic variation of process parameters, temperature and process gas atmosphere has been carried out. Metallographic inspection, X‐ray diffraction and Glow Discharge Optical Spectroscopy analysis (GDOES) were used in this investigation. The results clarified that depending on the amount of nitrogen in the gas atmosphere nitrided layers with and without compound layer can be generated in the surface of M2 tool steel for temperatures from 350°C to 500°C. For plasma nitriding in 5 vol.% Nitrogen and 95 vol.% Hydrogen no compact compound layer was formed. The gas mixture of 76 vol.% Nitrogen resulted in compound layer formation for all temperatures from 350°C to 500°C. X‐ray phase analysis indicated an almost 100% ε‐(carbo)nitride phase but the existence of the γ′‐(carbo)nitride could not be excluded completely from the X‐ray phase diagrams. After corrections to account for the nitrogen gradient, high compressive surface residual stresses have been measured in the diffusion zone. They increased with temperature. After a qualitative correction for chemical composition gradients high tensile residual stresses were found probably existing in the ε‐(carbo)nitride phase for the investigated plasma nitrided tool steel samples.  相似文献   

7.
Nitriding increases surface hardness and improves wear resistance of stainless steels. However, nitriding can sometimes reduce their corrosion resistance. In this paper, the influence of nitriding on the corrosion resistance of martensitic stainless steel was investigated. Plasma nitriding at 440 °C and 525 °C and salt bath nitrocarburizing were carried out on X17CrNi16‐2 stainless steel. Microhardness profiles of the obtained nitrided layers were examined. Phase composition analysis and quantitative depth profile analysis of the nitrided layers were preformed by X‐ray diffraction (XRD) and glow‐discharge optical emission spectrometry (GD‐OES), respectively. Corrosion behaviour was evaluated by immersion test in 1% HCl, salt spray test in 5% NaCl and electrochemical corrosion tests in 3.5% NaCl aqueous solution. Results show that salt bath nitrocarburizing, as well as plasma nitriding at low temperature, increased microhardness without significantly reducing corrosion resistance. Plasma nitriding at a higher temperature increased the corrosion tendency of the X17CrNi16‐2 steel.  相似文献   

8.
Ion nitriding modifies composition of surface layer in steel used in plastic mold application and this consequently improves their lifecycle. In this study, pulsed plasma nitriding technique was used to produce a protecting hard layer on AISI P20 steel at three process temperatures of 450°C, 500°C, and 550°C for durations of 2.5, 5, 7.5, and 10 h at a constant gas mixture of 75% N2–25% H2. Surface morphology was studied by optical and scanning electron microscope and the phases formed on the surface layer were determined by X-ray diffraction (XRD). Elemental depth profile was measured by techniques including energy dispersive spectroscopy, wavelength dispersive spectrometer, and glow discharge spectroscopy and for identifying hardness profile, microhardness variations from surface to core of samples were recorded. Results showed that, thickness of compound layer of plastic mold steel AISI P20 was negligible. Moreover in ion nitriding of AISI P20, nitride were formed and grown in some preferred directions and upward diffusion of carbon and downward diffusion of nitrogen occurred during ion nitriding of AISI P20. XRD results showed that, ?-nitride is the dominant phase after plasma nitriding in all strategies. Furthermore, ion nitriding improved hardness of AISI P20 up to three times and as time and temperature increased, hardness and hardness depth of diffusion zone increased considerably.  相似文献   

9.
研究了0.1%C-3%Mn中锰钢的热膨胀模拟相变行为和一步法与二步法ART处理对其显微组织和力学性能的影响。结果表明,二步法ART处理比一步法可产生更多的残留奥氏体,可显著改善钢的成型性能。将实验钢的热轧态试样在740℃预处理后再在660℃~680℃进行ART处理能产生12%~14%的残留奥氏体,使钢的总延伸率高于35%,均匀延伸率高于20%。热处理制度为740℃×0.5 h+670℃×1.0 h的试样具有最佳的综合性能,其屈服强度为470 MPa,抗拉强度为680 MPa,总延伸率为40.7%,均匀延伸率高达25%,冲击吸收功为163 J。  相似文献   

10.
为提高高温抗氧化性能,对HP40Nb钢进行了热浸镀Al-10%(质量分数)Si,并进行不同温度扩散处理,研究了不同扩散处理试样在1000℃条件下的高温氧化行为,通过SEM,EDS和XRD分析了经不同扩散处理后的渗层在高温氧化过程中的组织结构变化.结果表明:经800℃/4h扩散处理,渗层由内层(NiAl+ Cr3 Si)...  相似文献   

11.
Transformation induced plasticity (TRIP) steels combine high strength and excellent ductility, making them suited for application in crash-relevant parts in the automotive industry. However, the high Si contents in the conventional TRIP steel will generate surface defects on the hot rolled strip, which is difficult to process in continuous galvanizing lines. In order to solve the above problem the TRIP steel with the addition of Al replacing majority of Si was designed. In the present paper, the volume fraction of various phases in a C-Mn-Si-Al-Cr TRIP steel was determined by metallographic examination and X-ray diffraction analysis, and the multi-phase microstructures were characterized using an atomic force microscope based on their height difference. Tensile tests were performed at different temperatures ranging from -40℃ to 90℃. The results show that transition temperature Ms^σ in the present TRIP steel cannot be determined due to its lower volume fraction of retained austenite, different from the conventional TRIP steel. While the yield stress and tensile strength at different temperatures are higher than those of the conventional TRIP steel, which is attributed to the addition of Cr. In order to evaluate the effect of martensitic transformation on the total elongation, the sample without retained austenite obtained by quenching in liquid nitrogen was carried out under tensile test. The results indicate that the elongation of the original sample containing 9% retained austenite is about 20% higher than that of the sample quenched in liquid nitrogen, which demonstrates that the retained austenite plays an important role in improving the elongation of the TRIP steel.  相似文献   

12.
Plain carbon steels are not suitable for nitriding as they form an extremely brittle case that spalls off readily, and the hardness increment of the diffusion zone is small. In this research, the effect of plasma nitriding time and temperature variation on the microstructure of the pack cemented aluminized plain carbon steel is investigated. All samples were aluminized at 900 °C for 2 h; the aluminized samples were subsequently plasma nitrided at 500 °C, 550 °C and 600 °C for 2.5, 5, 7.5 and 10 h. The phases formed on the sample surface were detected by X-ray diffraction (XRD). The cross section and samples surface were investigated by optical and scanning electron microscopy (SEM). Microhardness test was conducted to determine hardness change from the surface to the sample core. Results showed that by aluminizing the steel, Fe3Al phases as well as Fe–Al solid solution were formed on the surface and some aluminum rich precipitates were formed in solid solution grain boundaries. Plasma nitriding of the aluminized layer caused the formation of aluminum and iron nitride (AlN, Fe4N) on the sample surface. Consequently, surface hardness was improved up to about eight times. By increasing the nitriding temperature and time, aluminum-rich precipitates dissociated. Moreover, due to the diffusion of nitrogen through aluminized region during ion nitriding, iron and aluminum nitrides were formed in aluminized grain boundaries. Increasing nitriding time and temperature lead to the growth of these nitrides in the grain boundaries of the substrate. This phenomenon results in the increment of sample hardness depth. Plasma nitriding of aluminized sample in low pressure chamber with nitrogen and hydrogen gas mixture reduced surface aluminum oxides which were formed in aluminizing stage.  相似文献   

13.
采用等离子渗氮技术提升TC4钛合金的耐磨性并探究最优渗氮温度。利用LDM 1-100型等离子渗氮设备,在650,700,750,800,850℃和900℃温度下对TC4钛合金进行渗氮处理,保温时间均为10 h。利用光学显微镜、扫描电子显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对不同温度渗氮试样的微观组织结构、表面形貌、表面粗糙度、相结构和硬度进行表征。利用CETR UMT-3型多功能摩擦磨损试验机测试等离子渗氮后TC4钛合金的摩擦学性能。结果表明:TC4钛合金表面显微硬度和粗糙度随温度升高而增大,在900℃渗氮后TC4钛合金表面显微硬度达到了1318HV 0.05,约为基体(360HV 0.05)的4倍。硬度的升高是由于渗氮后试样表面形成了硬质氮化物相(TiN和Ti2N相),且随着渗氮温度升高氮化物的含量增加。相较于低温渗氮(低于750℃)的试样,850℃和900℃渗氮试样的承载能力显著提升。与原始TC4试样相比,渗氮处理后试样的磨损体积显著降低。当渗氮温度为850℃时,试样磨损体积为未处理试样磨损体积的1.2%(1 N),3.0%(3 N)和62.2%(5 N),试样的耐磨性提升更为显著。  相似文献   

14.
采用OM、SEM、XRD、EBSD以及TEM等手段分析时效温度对Fe-30Mn-9Al-0.9C-0.45Mo钢中奥氏体的晶粒尺寸和力学性能的影响.结果 表明:时效处理对Fe-30Mn-9Al-0.9C-0.45Mo钢的组织和性能有较大的影响.在450℃时效的实验钢其抗拉强度为863 MPa、断后伸长率为56.1%、强...  相似文献   

15.
对经过135°ECAP+旋锻变形后的工业纯钛100,150,200,250,300,350,400,450℃和500℃下保温1h退火。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、拉伸试验机及显微硬度仪等技术研究ECAP+旋锻变形工业纯钛退火后的组织与性能变化。结果表明:在400℃以下退火时,显微组织中位错密度降低,晶界逐渐清晰,变形组织未发生明显变化,材料的抗拉强度和显微硬度略有降低,伸长率增加不明显;在400℃以上退火时,随着退火温度的升高,发生再结晶,晶粒尺寸明显增大,平均晶粒尺寸约为5μm,材料的抗拉强度和显微硬度均出现明显降低,伸长率增加。拉伸断口表明,ECAP+旋锻变形退火后工业纯钛的拉伸断裂均为韧性断裂。随着退火温度的升高,韧窝尺寸变大,韧窝深度变深。  相似文献   

16.
An optimized low-temperature chromizing process at 500℃ was realized on a plain medium-carbon steel with 0.45 wt pct carbon via a duplex chromizing process which consists of a precursor plasma nitriding, and a followed salt bath thermoreactive deposition and diffusion (TRD) chromizing process. CrN layer with a thin diffusion layer underneath was formed. The duplex chromizing process was studied by optical microscopy(OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction(XRD), and transmission electron microscopy (TEM). It was found that the chromizing speed at 500℃ was successfully enhanced by adding more Cr-Fe powders into the salt bath, and the CrN layer formed at the cost of the prior nitride compound layer. A CrN layer with average 8.1μm in thickness and 1382 HV0.01 in microhardness was formed on the substrate by duplex chromizing at 500℃ for 24 h. Further more, the CrN layer consisted of nanocrystalline CrN grains.  相似文献   

17.
分别测试了固溶时效处理TA19钛合金锻件经400℃和500℃热暴露100h后的室温和高温拉伸性能,研究了热暴露对其拉伸性能的影响。结果表明:TA19钛合金锻件经400℃和500℃热暴露100h后,其表面形成的脆化层对合金强度影响不大,合金没有产生热暴露效应,表明TA19钛合金的热暴露效应起始温度大于500℃。  相似文献   

18.
Ion nitriding is an operation widely used in industry to harden materials surface. Nowadays, friction welding is one of the special welding methods used for welding the same or different kinds of materials. Especially in industry, it can be necessary to use materials after having operated them with different techniques or to use materials obtained by different manufacturing techniques. Investigating the mechanical and metallurgical properties of this kind of materials can be crucial. In this study, austenitic-stainless steel was used as an experimental material. Additionally, the samples of austenitic stainless steel with a diameter of 10 mm were joined by friction welding. The samples were subjected to ion nitriding process at 550 °C for 24 and 60 h. Then, tensile, fatigue, notch-impact and hardness tests were applied to the weldless and welded parts, and metallographic examinations were carried out. It was found that chromium and iron nitrides precipitated along the grain boundaries and in the middle of the grains. Spectrum patterns revealed that the most dominant phases resulted from the formation of CrN, Fe4N and Fe3N. However, the tests revealed that high temperature and longer time of ion nitriding caused a decrease in the values of fatigue and tensile strengths as well as in the notch-impact toughness in the ion nitrided joints.  相似文献   

19.
Abstract

Spheroidal graphite (SG) cast iron is often plasma nitrided for corrosion resistance, and plasma nitriding has been proposed as a surface engineering treatment to improve wear resistance. However, the microstructure of austempered SG iron comprises constituents that may be unstable at nitriding temperatures. Therefore, the thermal stability of austempered SG cast iron has been studied at high temperature. Differential scanning calorimetry shows that microstructures obtained by austempering at low (300°C) and intermediate (380°C) temperatures, and which contained retained austenite, underwent a large exothermic transition during heating to typical nitriding temperatures. The transition began at approximately 470°C and peaked at 510–520°C, and was due to the decomposition of retained austenite to ferrite and cementite. A microstructure obtained by austempering at a higher temperature (440°C), and which consisted entirely offirst and second stage bainite, was stable up to nitriding temperatures. After tempering for 2 h at 570°C all austempered microstructures consisted offerrite and cementite, but cementite was most finely distributed in the material that had been austempered at 300°C, and coarsest in that austempered at 440°C. It is concluded that if SG cast iron is to be nitrided conventionally at temperatures >500°C, then prior austempering to obtain controlled microstructures is of limited value.

MST/3106  相似文献   

20.
The results of study on the boro-carburizing and boronizing of AISI 1015 steel on tensile strength was carried out by Taquchi-grey relational method. The orthogonal array L9(34) was used to conduct the experiment. The thickness of boride layer increased with increase in process temperature and time. The thickness of boride layers for boronized AISI 1015 steel was more than the pre-carburized and boronized AISI 1015 steel. The microhardness decreased with increase in distance from the surface to the core. However, the hardness gradient reduced gradually from the surface to the core in case of boro-carburized treatments compared to boronized treatments. The optimal process parameters and their levels for pre-carburized AISI 1015 steel are carbon content 0.45% at 950 °C temperature and 4 h process duration. The results revealed that process time, case carbon content and process temperature influenced the yield strength and % elongation. The ultimate strength is influenced by the process temperature, process time and carbon content. The process temperature was the most influential control factor that affects the tensile strength properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号