首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicone–epoxy (SiE) resins were synthesized through the hydrolytic condensation of 2‐(3,4‐epoxycyclohexylethyl) methyldiethoxysilane (EMDS) and the cohydrolytic condensation of EMDS with dimethyldiethoxysilane. Structural characterization was carried out by 1H‐NMR, 29Si‐NMR, and mass spectrometry analysis; the resins were linear oligomers bearing different numbers of pendant epoxy groups, and the average number of repeat Si O units ranged from 6 to 11. Methyhexahydrophthalic anhydride was used to cure the SiE resins to give glassy materials with high optical clarity. The cured SiE resins showed better thermal stability and higher thermal and UV resistances than a commercial light‐emitting diode package material (an epoxy resin named CEL‐2021P). The effect of the epoxy value on the thermal and mechanical properties and the thermal and UV aging performances of the cured SiE resins were investigated. The SiE resins became more flexible with decreasing epoxy value, and the resin with the moderate epoxy value had the highest thermal and UV resistances. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
火文君  王晶  张道洪 《粘接》2010,31(5):30-32
采用脂环族环氧树脂(EPL-4221)与双酚A型环氧树脂E-51共混,用酸酐固化剂和促进剂使其固化,研究脂环族环氧树脂的用量对共混树脂性能的影响及其规律性,包括冲击强度、弯曲强度、拉伸强度、维卡软化点温度、漆膜的粘附力、铅笔硬度、耐磨性以及拉伸剪切强度。结果表明,随脂环族环氧树脂用量的增加,共混树脂的综合性能先增加后降低,脂环族环氧树脂的质量分数为15%-20%时,具有最大值。  相似文献   

3.
Laurylfluoro glycidyl ether (FGE) was synthesized by laurylfluoro‐1‐pentanol with epichlorohydrin, and confirmed by FTIR and 13C‐NMR. The surface properties, moisture absorption, and mechanical properties of the epoxy resins modified by different content of laurylfluoro glycidyl ether acted as mono functional thinner were investigated by X‐ray photoelectron spectroscopy (XPS), universal testing machine (UTM), dynamic mechanical thermal analyzer (DMTA), etc. The fluorine content at the surface of the modified resins were enriched greatly with the increase of the content of laurylfluoro glycidyl ether, and the hydrophobic property of the resins surface increased. When the FGE content was 10%, the fluorine content at the surface of the modified epoxy resin reached to 66% and the water contact angle was 102°. The equilibrium moisture content of the resin dropped by 30% when the content of FGE was 5%. The mechanical properties of the epoxy resins modified by FGE were improved while the thermal mechanical properties changed little at low content of FGE (less than 3%). Further increase of FGE content in the epoxy resins may result in decreases of the mechanical and thermal mechanical properties of the resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Poly(aryl ether ketone)s were used as modifiers for bisphenol-A diglycidyl ether epoxy resin (AER 331) cured with methyl hexahydrophthalic anhydride. Poly(phthaloyl diphenyl ether) (PPDE), soluble in the uncured epoxy resin without using solvents, was prepared by the Friedel-Crafts reaction of phthaloyl chloride and diphenyl ether. The mechanical, thermal, and dynamic viscoelastic properties of the modified resins with PPDE were examined and compared to the parent resin (AER 331). The fracture toughness, KIC, for the modified resins increased at no expense to their mechanical and thermal properties on 10 wt % addition of PPDE with molecular weights of more than 17,000. The toughening mechanism is discussed based on the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system.  相似文献   

5.
Optically clear silicone/epoxy hybrid resins were synthesized. The silicone resin (SiR) carrying Si? H, Si? CH?CH2 and Si? OH groups was prepared by hydrolytic condensation. The blends of SiR and diglycidyl ether of hydrogenated bisphenol A (DGEHBA) were cured through platinum‐catalyzed hydrosilylation and aluminium acetylacetonate‐catalyzed polymerization. The curing process was studied using differential scanning calorimetry and rigid‐body pendulum rheometry. It was found that the ratio of SiR to DGEHBA plays a major role in the curing process. The Si? OH groups of SiR assist polymerization of DGEHBA, and react with the epoxy resin to prevent phase separation. The cured hybrid resins are single‐phase materials with a transmittance of about 87% at 400 nm for a thickness of 3 mm using air as reference. UV resistance and thermal stability of the hybrids are largely dependent on the composition. The adhesive strength of the SiRs can be significantly improved by a small fraction of DGEHBA, with a marginal influence on UV resistance. However, increasing the epoxy proportion has a marked negative influence on thermal stability. Compounding stabilizers, especially thermal stabilizers, are essential, in particular for high epoxy content, if the hybrids are to be used for high‐brightness light‐emitting diode packaging. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Wanshuang Liu  Li Xiong  Linni Zhao 《Polymer》2010,51(21):4776-5493
Novel thermally reworkable, phosphorus-containing, di- and tri-functional liquid cycloaliphatic epoxy resins were designed and synthesized. Their chemical structures were characterized by means of MS, FTIR, 1H NMR and 31P NMR methods. After curing, the products were transparent and stable up to 220 °C, while exhibited quick thermal decomposition at the temperature range of 255-280 °C. The removal test showed that, after heat-treatment at 260 °C in air atmosphere for only 4 min, the residual char on the glass substrate could be easily wiped off. This unique degradation behavior was attributed to the synergistic effect of two factors: the thermally-labile phosphate groups evenly distributed within the three-dimensional network and the in-situ catalyzing of phosphoric acid generated from the cleavage of phosphate bond on the pyrolysis of adjacent other phosphate and ester groups, as evidenced by the results of molecular modeling, isothermal TGA and FTIR spectra. In addition, compared to the commercial cycloaliphatic epoxy resin ERL-4221, the newly synthesized epoxy resins had increased limiting oxygen index (LOI) by 31%. The combination of excellent reworkability, non-halogen flame retardancy, high glass transition temperature of 227 °C and high mechanical modulus endows them the potential for environment-friendly microelectronic and optoelectronic packaging applications.  相似文献   

7.
High refractive index of epoxy resins used as encapsulant in light-emitting diode (LED) is essential in improving the light extraction efficiency, reducing heat and prolonging the service life of LED packages. In this study, diglycidyl ether of thiodibenzenethiol (DGETDBT), an epoxy resin with high refractive index, was synthesized via a novel method and its chemical structure was characterized with Fourier-transform infrared (FTIR) spectrometer and 1H NMR spectrometer. Using m-xylylenediamine (MXDA) as curing agent, the curing behavior of DGETDBT was studied by differential scanning calorimetry (DSC) and was compared with that of diglycidyl ether of bisphenol A (DGEBA), a generally used encapsulant in LED. The thermal behavior and optical performance of these two resins were investigated with thermogravimetric analyses, UV?CVis scanning spectrophotometer, and Abbe refractometer, respectively. The results showed that DGETDBT/MXDA resin demonstrated similar curing and thermal behavior to DGEBA/MXDA resin. But its refractive index reaches 1.698, which is significantly higher than that of DGEBA/MXDA resin (1.604). Comparatively, DGETDBT resin can be expected to be a more effective encapsulant of LED.  相似文献   

8.
Novel epoxy resin modifiers, DOPO–TMDS and DOPO–DMDP were synthesized by addition reaction of divinylsiloxane with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Halogen-free flame retardant epoxy resins were obtained through modification of o-cresol novolac epoxy resin cured by phenol novolac resin using DOPO–TMDS and DOPO–DMDP which were characterized by 1H NMR, 13C NMR, 31P NMR and FT-IR measurements. Effects of the phosphorus-containing siloxanes on thermal stabilities, mechanical properties and flame retardant properties of the epoxy resins were investigated. The cured epoxy resins exhibited better mechanical properties and greatly improved flame retardant properties due to the presence of phosphorus-containing siloxanes. The cured epoxy resins with phosphorus loading of 2.0 wt% showed LOI values of 32–33 and achieved UL94V-0 ratings.  相似文献   

9.
A novel epoxy resin modifier, phosphorus‐containing epoxide siloxane (DPS) with cyclic phosphorus groups in the Si O network, was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with polyhedral‐oligomeric siloxanes, which was synthesized by the sol–gel reaction of 3‐glycidoxypropyltrimethoxysilane. DPS was confirmed by Fourier transform infrared and 29Si NMR measurement, and then was employed to modify epoxy resin at various ratios, with 4,4‐diaminodiphenyl‐methane as a curing agent. In order to make a comparison, DOPO‐containing epoxy resins were also cured under the same conditions. The resulting organic–inorganic hybrid epoxy resins modified with DPS exhibited a high glass transition temperature (Tg), a good thermal stability, and a high limited oxygen index. In addition, the tensile strength of cured products was also rather desirable. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
A series of trifunctional epoxy resins were successfully synthesized by the condensation of 2,6-dimethylol-4-methylphenol with phenol , cresol, 2,6-dimethylphenol or 2-naphthol, respectively, followed by epoxidation with a halohydrin. The structures of the synthesized triphenols were characterized by elemental analysis (EA), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectrometry, including 1H-NMR and 13C-NMR. The resulted epoxy resins were cured with 4–4′-diaminodiphenyl sulfone (DDS), and the cured products were investigated. The cured trifunctional 2,6-bis-(2-glycidyloxy-1-naphthyl-methyl)-4-methyl phenyl glycidyl ether had the highest glass transition temperature, highest thermal stability, the lowest coefficient of thermal expansion, and lowest moisture absorption of the epoxy resins studied. The internal stress of cured naphthalene-containing epoxy resin was reduced by modification with 12 wt % amino-terminated polydimethyl siloxane (ATPDMS), while the glass transition temperature was only slightly depressed. Phase separation of the silicone rubber-modified epoxy matrix was characterized by SEM. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1907–1921, 1998  相似文献   

11.
In this work, the multiepoxy functional glycidyl ether (GE) modified urea‐formaldehyde (UF) resins were synthesized via a traditional alkaline‐acid process under low formaldehyde/urea (F/U) molar ratio. The synthesized resins were characterized by 13C magnetic resonance spectroscopy (13C‐NMR), indicating that GE can effectively react with UF resins via the ring‐opening reaction of epoxy groups. Moreover, the residual epoxy groups of GE could also participate in the curing reaction of UF resins, which was verified by Fourier transform infrared spectroscopy. The storage stability of GE‐modified UF resins and the thermal degradation behavior of the synthesized resins were evaluated by using optical microrheology and thermogravimetric analysis, respectively. Meanwhile, the synthesized resins were further employed to prepare the plywood with the veneers glued. For the modification on bonding strength and formaldehyde emission of the plywood, the influences of addition method, type, and amount of GE were systematically investigated. The performance of UF adhesives were remarkably improved by the modification of GE around 20–30% (weight percentage of total urea) in the acidic condensation stage during the resin synthesis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Telechelic resins with reactive end groups (epoxy phosphate and epoxy ester) were synthesized using bisphenol-A (BPA) epoxide. The bisphenol-A based epoxide, the epoxy phosphate, and the epoxy ester were all modified with tetraethylorthosilicate (TEOS) oligomers, which were prepared through the hydrolysis and condensation of TEOS monomer with water under acidic condition. The epoxide/polysilicate (organic/inorganic) hybrid systems were characterized systematically, using FTIR, 1H, 13C, 31P, and 29Si NMR, and MALDI-TOF. The modified epoxides were thermally cured with a melamine-formaldehyde resin, cast on steel substrates. The coating performance of the modified epoxides was evaluated by pencil hardness, crosshatch adhesion, reverse and direct impact resistance, mandrel bending, and pull-off adhesion. Viscoelastic properties of the hybrid systems were also evaluated as a function of polysilicate content. Corrosion performance was evaluated via salt spray (fog) test for 264 h. Salt spray analysis revealed that inorganically modified epoxides provided improvement over the unmodified epoxide resins with respect to both corrosion resistance and adhesion to steel substrates.  相似文献   

13.
Miaojun Xu  Xu Li  Bin Li 《火与材料》2016,40(6):848-860
A novel cross‐linked organophosphorus–nitrogen polymetric flame retardant additive poly(urea tetramethylene phosphonium sulfate) defined as PUTMPS was synthesized by the condensation polymerization between urea and tetrahydroxymethyl phosphonium sulfate. Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 13C and 31P solid‐state nuclear magnetic resonance. The synthesized PUTMPS and curing agent m‐phenylenediamine were blended into epoxy resins to prepare flame retardant epoxy resin thermosets. The effects of PUTMPS on fire retardancy and thermal degradation behavior of EP/PUTMPS thermosets were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter measurement, and thermalgravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS), respectively. Water resistant properties of epoxy resin thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the EP/12 wt% PUTMPS thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value reached 31.3%. The TGA results indicated that the incorporation of PUTMPS promoted epoxy resin matrix decomposed and char forming ahead of time, which led to a higher char yield and thermal stability for epoxy resin thermosets at high temperature. The morphological structures and analysis of XPS for the char residues of the epoxy resin thermosets shown that PUTMPS benefited to the formation of a sufficient, more compact, and homogeneous char layer with rich flame retardant elements on the materials surface during burning, which prevented the heat transmission and diffusion, limited the production of combustible gases, inhibited the emission of smoke, and then led to the reduction of the heat release rate and smoke produce rate. After water resistance tests, EP/12 wt% PUTMPS thermosets still remained excellent flame retardancy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Stiff and brittle cyanate ester (CE) resin was modified by copolymerizing it with epoxy resin (ER) and phenolic resin (PR) to improve its toughness and flexibility. The cure process of the modified CE resin was characterized by gel time curves and differential scanning calorimetry curves. The Fourier transform infrared spectra of the modified CE resin showed its chemical structure during the curing process. The mechanical properties, thermal behavior, dielectric properties, and morphology of the modified CE resins were investigated. The results showed that an increase in epoxy and phenolic resins resulted in improved flexibility while maintaining thermal stability. When the mass ratio of CE/ER/PR was 70 : 15 : 15 (w/w), flexural strength and impact strength of the modified CE resin increased from 113.6 MPa and 5.2 kJ/m2 to 134.5 MPa and 16.7 kJ/m2, respectively. Little of the thermal stabilityand dielectric properties was sacrificed in the modification of the CE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3150–3156, 2007  相似文献   

15.
A novel fluorinated biphenyl‐type epoxy resin (FBE) was synthesized by epoxidation of a fluorinated biphenyl‐type phenolic resin, which was prepared by the condensation of 3‐trifluoromethylphenol and 4,4′‐bismethoxymethylbiphenyl catalyzed in the presence of strong Lewis acid. Resin blends mixed by FBE with phenolic resin as curing agent showed low melt viscosity (1.3–2.5 Pa s) at 120–122°C. Experimental results indicated that the cured fluorinated epoxy resins possess good thermal stability with 5% weight loss under 409–415°C, high glass‐transition temperature of 139–151°C (determined by dynamic mechanical analysis), and outstanding mechanical properties with flexural strength of 117–121 MPa as well as tensile strength of 71–72 MPa. The thermally cured fluorinated biphenyl‐type epoxy resin also showed good electrical insulation properties with volume resistivity of 0.5–0.8 × 1017 Ω cm and surface resistivity of 0.8–4.6 × 1016 Ω. The measured dielectric constants at 1 MHz were in the range of 3.8–4.1 and the measured dielectric dissipation factors (tan δ) were in the range of 3.6–3.8 × 10?3. It was found that the fluorinated epoxy resins have improved dielectric properties, lower moisture adsorption, as well as better flame‐retardant properties compared with the corresponding commercial biphenyl‐type epoxy resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A liquid silicon/phosphorus containing flame retardant (DOPO–TVS) was synthesized with 9,10‐dihydro‐9‐oxa‐10‐phosphapheanthrene‐10‐oxid (DOPO) and triethoxyvinylsilane (TVS). Meanwhile, a modified epoxy resin (IPTS–EP) was prepared by grafting isocyanate propyl triethoxysilane (IPTS) to the side chain of bisphenol A epoxy resin (EP) through radical polymerization. Finally, the flame retardant (DOPO–TVS) was incorporated into the modified epoxy resin (IPTS–EP) through sol–gel reaction between the ethyoxyl of the two intermediates to obtain the silicon/phosphorus containing epoxy resin. The molecular structures of DOPO–TVS, IPTS–EP and the final modified epoxy resin were confirmed by FTIR spectra and 1H‐NMR, 31P‐NMR. Thermogravimetric analysis (TGA), differential scanning calorimetry, and limiting oxygen index were conducted to explore the thermal properties and flame retardancy of the synthesized epoxy resin. The thermal behavior and flame retardancy were improved. After heating to 600°C in a tube furnace, the char residue of the modified resin containing 10 wt % DOPO–TVS displayed more stable feature compared to that of pure EP, which was observed both by visual inspection and scanning electron microscope (SEM). Moreover, the mechanical performance testing results exhibited the modified epoxy resins possessed elevated tensile properties and fracture toughness which is supported by SEM observation of the tensile fracture section. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42788.  相似文献   

17.
Aromatic polyesters, prepared by the reaction of phthalic or isophthalic acids and α,ω-alkanediols, were used to reduce the brittleness of bisphenol-A diglycidyl ether epoxy resin cured with methyl hexahydrophthalic anhydride. These polyesters were effective as modifiers for toughening of the epoxy resin system. The most suitable composition for modification of the epoxy resins was inclusion of 20 wt % of poly(ethylene phthalate) (MW 7200), which resulted in a 150% increase in the fracture toughness (KIC) of the cured resin at no expense of its mechanical properties. The effectiveness of poly(alkylene phthalate)s as modifiers decreased with increasing the chain length of alkylene units. The toughening mechanism was discussed based on the morphological and dynamic mechanical behaviors of the modified epoxy resin system.  相似文献   

18.
Hybrid modifiers composed of N-phenylmaleimide–styrene copolymers (PMS), and N-phenylmaleimide–styrene–p-hydroxystyrene terpolymers (PMSH) containing pendent p-hydroxyphenyl groups as functionalities, were used to improve the toughness of bisphenol-A diglycidyl ether epoxy resin cured with p,p′-diaminodiphenyl sulphone. The hybrid modifiers were effective in toughening the epoxy resin. When using the modifier composed of 10 wt% PMS (M?w 313000) and 2.5 wt% PMSH (2.5 mol% p-hydroxystyrene units, M?w 316000), the fracture toughness (KIC) for the modified resins increased 100% with no deterioration in the flexural properties and the glass transition temperature. The improvement in toughness of the epoxy resins was attained because of the co-continuous phase structure and the improvement in interfacial adhesion. The toughening mechanism is discussed in terms of the morphological characteristics of the modified epoxy resin systems.  相似文献   

19.
Epoxy-terminated poly(aryl ether sulfone)s (PSE) were prepared by the reaction of epichlorohydrin with hydroxyethyl-terminated polysulfones, which were synthesized from chloro-terminated polysulfones (PSC) and diethanolamine. Both PSE and PSC were used as modifiers for toughening of bisphenol A diglycidyl ether epoxy resin cured with p,p′-diaminodiphenyl sulfone. The mechanical, thermal, and dynamic viscoelastic properties of the modified resins were examined and compared to the parent epoxy resin. The effectiveness of PSC was larger than that of PSE. The fracture toughness, KIC, for the modified resin increased 45% at slight expense of its mechanical properties on 20 wt % addition of PSC (Mw 5300). These results were discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system.  相似文献   

20.
通过聚甲基三乙氧基硅烷(PTS)与环氧丙氧丙基三甲氧基硅烷缩合产物对线型酚醛树脂进行接枝改性,并将其改性产物用于固化环氧树脂。通过制备一系列不同比例改性酚醛树脂并分别与环氧树脂固化。所得的环氧固化产物进行冲击强度、玻璃化转变温度、热失重等测试,结果表明,改性固化产物比未改性固化产物玻璃化转变温度提高了约30℃,冲击强度最高提高了36.6%,高温热稳定性也显著增强。改性产物实现了热稳定性和韧性的综合提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号