首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Nylon 6 nanofibers containing silver nanoparticles (nylon 6/silver) were successfully prepared by electrospinning. The structure and properties of the electrospun fibers were studied with the aid of scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectroscopy, and X‐ray diffraction. The structural analysis indicated that the fibers electrospun at maximum conditions were straight and that silver nanoparticles were distributed in the fibers. Finally, the antibacterial activities of the nylon 6/silver nanofiber mats were investigated in a broth dilution test against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. It was revealed that nylon 6/silver possessed excellent antibacterial properties and an inhibitory effect on the growth of S. aureus and K. pneumoniae. On the contrary, nylon 6 fibers without silver nanoparticles did not show any such antibacterial activity. Therefore, electrospun nylon 6/silver nanocomposites could be used in water filters, wound dressings, or antiadhesion membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Herein, a novel technology named coaxial electro-spraying/electrospinning was successfully introduced, which can simultaneously prepare nanofibers and nanoparticles. First, the device contains an outer nozzle and an inner nozzle, which combine electrospinning with electro-spraying technology. Then, the polyamide 6 (PA6) was spun to prepare the nanofibers from the inner nozzle, and the silver nanoparticles (Ag NPs) into the PA6 solution were sprayed to prepare the nanoparticles from the outer nozzle. PA6 nanofibers (NFs)/Ag nanoparticles (NPs) antibacterial composite membranes for the filtration of fine particulate pollutants were successfully prepared using coaxial electro-spraying/electrospinning. The microstructure, physical properties, and antibacterial properties of the composite membrane were investigated. The results show that Ag NPs are successfully loaded in situ onto PA6 NFs of approximately 100 nm to form a three-dimensional (3D) structure. The filtration efficiency of the 3D structured filtration membrane reaches 90.98%, compared to only 12.78% for the melt-blown cloth mask filter material when tested with polystyrene microspheres (PS) of 200 nm. The contact angle of the composite membrane decreased from 145.47° to 44.11°, indicating a significant improvement in the hydrophilicity of the membrane. Furthermore, depositing Ag on the surface fibers resulted in an impressive antibacterial rate of 99.75% against Penicillium.  相似文献   

4.
Medical applications require, in most cases, antibacterial protection. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. In this research work, we have used silver nanoparticles (Ag NPs) with different surfactants, polyvinyl pyrrolidone (PVP) and oleic acid (OA) to facilitate dispersion. PP‐Ag NPs compounds were prepared by melt mixing, and the effects of the processing conditions on nanoparticles' dispersion were investigated by transmission electron microscopy (TEM). The antibacterial efficiency of PP‐Ag NPs compounds against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8379 was evaluated. Results show that good dispersion is obtained with rotating speeds in the 350–500 rpm range. TEM analysis reveals balanced dispersion and presence of some Ag NPs aggregates. Regarding antimicrobial properties, the use of PVP as surfactant leads to “significant” antimicrobial activity of 1.5 against Staphylococcus aureus and Escherichia coli; on other hand, the use of oleic acid (OA) as surfactant leads to strong protection against Staphylococcus aureus (antimicrobial activity between 2.5 and 3.3) but the overall protection against Escherichia coli is very low (lower than 1). Results show that the use of surfactants for Ag NPs has important effects on antibacterial properties of polypropylene filled with coated Ag NPs. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
Novel nanocomposite films of chitosan/phosphoramide/Ag NPs were prepared containing 1–5% of silver nanoparticles. The Ag NPs were synthesized according to the citrate reduction method. The XRD and SEM analysis of Ag NPs, chitosan (CS), phosphoramide (Ph), CS/Ph, CS/Ag NPs films and the nanocomposite films 1–5 containing CS/Ph/1–5% Ag NPs were investigated. The in vitro antibacterial activities were evaluated against four bacteria including two Gram‐positive Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and two Gram‐negative Escherchia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) bacteria. Results revealed greater antibacterial effects of the films against Gram‐positive bacteria. Also, nanocomposite films containing higher percent of Ag NPs showed more antibacterial activities. POLYM. COMPOS. 36:454–466, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM).  相似文献   

7.
Highly porous photocatalytic titania nanoparticle decorated nanofibers were fabricated by electrospinning nylon 6 nanofibers onto flexible substrates and electrospraying TiO2 nanoparticles onto them. Film morphology and crystalline phase were measured by SEM and XRD. The titania films showed excellent photokilling capabilities against E. coli colonies and photodegradation of methylene blue under moderately weak UV exposure (≤ 0.6 mW/cm2 on a 15-cm illumination distance). In addition, solution blowing was used to form soy protein-containing nanofibers which were decorated with silver nanoparticles. These nanofibers demonstrated significant antibacterial activity against E. coli colonies without exposure to UV light. The nano-textured materials developed in this work can find economically viable applications in water purification technology and in biotechnology. The two methods of nanofiber production employed in this work differ in their rate with electrospinning being much slower than the solution blowing. The electrospun nanofiber mats are denser than the solution-blown ones due to a smaller inter-fiber pore size. The antibacterial activity of the two materials produced (electrospun titania nanoparticle decorated nanofibers and silver-nanoparticle-decorated solution-blown nanofibers) are complimentary, as the materials can be effective with and without UV light, respectively.  相似文献   

8.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

9.
A green method by Verbascum speciosum was used to synthesize zinc oxide nanoparticles (ZnO NPs). ZnO NPs were coated with silver to synthesize Ag–ZnO nanocomposite (NCs). The physicochemical properties of Ag–ZnO NCs were analyzed by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. The FTIR indicated the peak of Zn–O vibration and some hydroxyl and carboxyl groups. PXRD analyses confirmed the synthesis of ZnO NPs and Ag–ZnO NCs. Due to the size of the crystallite obtained from PXRD, solid-phase sizes (from FESEM and TEM images), and dynamic sizes from DLS, agglomeration was observed. The Ag–ZnO NCs showed a negative charge surface (?49.3 mV). Ag–ZnO NCs had a high antibacterial activity towards two most important infectious bacteria (i.e., Escherichia coli and Staphylococcus aureus) and anticancer activity against human liver-carcinoma cells (HepG2). Later, it depended on time and concentration of Ag–ZnO NCs. The cytotoxicity properties of Ag–ZnO NCs were also studied against NIH-3T3 as a normal cell, where the results verified the lower cell toxicities of nanocomposite than the HepG2.  相似文献   

10.
Silver nanoparticles (Ag NPs) with diameter of approximately 10 nm were prepared by the reduction of silver nitrate using green synthesis, an eco-friendly approach. The synthesized Ag NPs were homogeneously deposited on silicon dioxide (SiO2) particles modified with dopamine, leading to the formation of SiO2/polydopamine (PD)/Ag nanocomposites (NCs) with a core–shell–satellite structure investigated by transmission electron microscopy. The Ag content of SiO2/PD/Ag NCs determined by inductively coupled plasma optical emission spectrometry was approximately 5.92 wt%. The antibacterial properties of both Ag NPs and SiO2/PD/Ag NCs against Vibrio natriegens (V. natriegens) and Erythrobacter pelagi sp. nov. (E. pelagi) were investigated by bacterial growth curves and inhibition zone. Compared to Ag NPs, the SiO2/PD/Ag NCs exhibited superior long-term antibacterial activity, attributed to its controlled release of Ag+ ions.  相似文献   

11.
Bifunctional nanofiber mats consisting of chitosan (CS), poly(vinyl alcohol) (PVA), and silver nanocrystals (Ag NCs) have been fabricated by a facile electrospinning method. The formation and presence of Ag NCs supported on CS/PVA nanofibers are confirmed by ultraviolet‐visible spectroscopy and X‐ray diffraction. The morphology of the samples is characterized by transmission electron microscopy and scanning electron microscopy. The prepared Ag NCs/CS/PVA nanofiber mats show pronounced antibacterial activity against Escherichia coli and excellent filtration property for suspended particulate matter (SPM) particles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46504.  相似文献   

12.
In this study, we fabricated an antifouling bilayered fibrous filter media having micro-nonwoven by melt blowing and nano-nonwoven by electrospinning process. Silver nanoparticle-incorporated polyurethane nanofibers were electrospun on the meltblown fiber of polypropylene. Silver nanoparticles were synthesized in situ in the polyurethane electrospun nanofibers through reduction of silver nitrate. The filter media were characterized by field emission scanning electron microscope, transmission electron microscopy, and X-ray diffraction and energy-dispersive X-ray spectroscopy analyses. The composite membrane showed that a thin layer of electrospun nanofibers improved the filtration efficiency without substantial increase in pressure drop. In situ synthesis of Ag NPs imparted the antibacterial and antifouling characteristics to the membrane.  相似文献   

13.
《Ceramics International》2023,49(12):20351-20356
Silver nanoparticles (Ag NPs) are used as antimicrobial agents due to their high-efficiency, broad-spectrum disinfection activity. However, the agglomeration and stability problems caused by excessive release of silver ions (Ag+) have severely restricted their developments. Herein, a novel silver/polyethyleneimine/reduced graphene oxide (Ag/PEI/rGO) antibacterial material featuring good dispersibility and permeability was rationally designed, thus benefiting for the capture of bacteria due to the introducing of highly-cationic PEI modifier and controllable release of biocidal agents (Ag+). Compared with Ag/rGO, the Ag/PEI/rGO has excellent stability and shows a more efficient sterilization efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with 100% germicidal efficiency with low orders of dozens of ppm. In addition, the outstanding biocompatibility of this Ag/PEI/rGO antibacterial material endows it with promising potential in sterilization applications, which is expected to solve the infection problem caused by bacterial biofilm formation.  相似文献   

14.
Green chemical method could be a promising route to achieve large scale synthesis of nanostructures for biomedical applications. Here, we describe a green chemical synthesis of silver nanoparticles (Ag NPs) on chitosan‐based electrospun nanofibers using Eucalyptus leaf extract. A series of silver salt (AgNO3) amounts were added to a certain composition of chitosan/polyethylene oxide aqueous acetic acid solution. The solutions were then electrospun to obtain nanofibrous mats and then, morphology and size of nanofibers were analyzed by scanning electron microscopy (SEM). Incubation of AgNO3‐containing mats into Eucalyptus leaf extract led to the formation of Ag NP clusters with average diameter of 91 ± 24 nm, depicted by SEM and transmission electron microscopy. Surface enhanced Raman spectroscopy also confirmed formation of Ag NPs on the nanofibers. The mats also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria with bigger inhibition zone for extract‐exposed mats against S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42133.  相似文献   

15.
The objective of this study was to develop a new class of bimetallic ZnO/Ag embedded polyurethane multi-functional nanocomposite by a straightforward approach. Bimetallic nanomaterials, composed of two unlike metal elements, are of greater interest than the monometallic materials because of their improved characteristics. In the present study the bimetallic composite was prepared using sol–gel via the facile electrospinning technique. The utilized sol–gel was composed of zinc oxide, silver and poly(urethane). The physicochemical properties of as-spun composite mats were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The antibacterial activity was tested using Escherichia coli as model organism. The antibacterial test showed that ZnO:Ag/polyurethane composite possesses superior antimicrobial activity than pristine PU and ZnO/PU hybrids. Furthermore, our results illustrate that the synergistic effect of ZnO and Ag resulted in the advanced antimicrobial action of bimetallic ZnO/Ag composite mat. The viability and proliferation properties of NIH 3T3 mouse fibroblast cells on the ZnO:Ag/polyurethane composite nanofibers were analyzed by in vitro cell compatibility test. Our results indicated the non-cytotoxic behavior of bimetallic ZnO:Ag/polyurethane nanofibers towards the fibroblast cell culture. In summary, novel ZnO:Ag/polyurethane composite nanofibers which possess large surface to volume ratio with excellent antimicrobial activity were fabricated. The unique combination of ZnO and Ag nanoparticles displayed potent bactericidal effect due to a synergism. Hence the electrospun bimetallic composite indicates the huge potential in water filtration, clinical and biomedical applications.  相似文献   

16.
The authors report herein in vitro antibacterial property and osteoblast biocompatibility of electrospun Ag doped HAp/PHBV (Ag-HAp/PHBV) composite nanofibers as an osteoconductive and antibacterial material for bone tissue engineering applications. Ag-HAp powders were synthesized and stable composite suspensions of Ag-HAp/PHBV were prepared with the aid of a cationic surfactant DTAB for the electrospinning process. Continuous and uniform composite nanofibers were generated within a diameter range of 400–900 nm. Obtained nanocomposite scaffolds provide a favorable environment for bone mineralization, SaOS-2 osteoblastic cell attachment and growth as well as they present antibacterial activity against E. coli and S. aureus bacteria without any noticeable cytotoxic effect.  相似文献   

17.
The aim of this study was to develop stable and porous poly(ethylene oxide) (PEO)–polycaprolactone blended and silver nanoparticle (Ag NP) incorporated composite nanofiber scaffolds as antibacterial wound dressings. A facile approach for the in situ synthesis of Ag NPs was explored. In this synthesis method, N,N‐dimethylformamide (DMF) was used as a solvent; it also acted as reducing agent for Ag NP formation. The stabilization of Ag NPs in the fibers was accomplished by PEO, which in turn acted as a reducing agent along with DMF. The successful synthesis of crystalline Ag NPs was confirmed by various characterization techniques. Thermogravimetric analysis, wettability, and surface roughness analysis of the nanofibers were done to examine the suitability of the scaffold for wound dressing. The as‐synthesized composite nanofibers possessed good roughness, wettability, and antibacterial potential against recombinant green fluorescent proteins expressing antibiotic‐resistant Escherichia coli. Thus, the nanofiber scaffold fabricated by this approach could serve as an ideal wound dressing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42473.  相似文献   

18.
This article is concerned with the effects of nanosized silver colloids on the antibacterial properties of silk fibers against two kinds of bacteria: Staphylococcus aureus and Escherichia coli. Different concentrations of silver nanoparticles (Ag NPs; 10, 25, 50, and 100 ppm) were applied to silk fibers by an exhaust method. The effect of medium pH on the Ag NP uptake on the fibers was studied. Also, sodium carbonate and sodium chloride were added to the liquor as auxiliaries. Scanning electron microscopy was used to observe the morphology of the silk fibers. The antibacterial activity was examined by a bacterial counting method. Energy‐dispersive X‐ray spectroscopy was also used to show the elements on the surface of the silk fibers. We observed that the antibacterial activity increased with silver treatment. It also increased with decreasing pH, especially for the raw silk. The use of NaCl improved the uniformity of the Ag NPs on the fiber surface and increased the antibacterial activities. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Postmodified polyacrylonitrile (PAN) microfibers/nanofibers with durable antibacterial performance was fabricated by a rapid and green method of microwave irradiation and electrospinning technologies. The fibers were endowed with antibacterial activity because of silver ions, which were embedded into PAN by nitrile click chemistry with microwave irradiation; they were then electrospun into neat and smooth microfibers/nanofibers. The obtained microfibers/nanofibers were tested against Staphylococcus aureus and exhibited powerful and long‐lasting antibacterial properties. The production of endurable antibacterial materials could effectively prevent the spread of microbes and beautify the living environment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45490.  相似文献   

20.
In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号