首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The reactivity of zinc under synthetic zinc patinas and the galvanic coupling in steel/patina/Zn are studied. Zn5(OH)6(CO3)2 and Na2Zn3(CO3)4⋅3H2O inhibit zinc anodic dissolution in NaCl, while Zn5(OH)8Cl2 H2O and Zn4(OH)6SO4 nH2O do not. The galvanic current in steel/patina/NaCl/Zn is smaller as compared to steel/NaCl/Zn. The inhibiting effect decreases with time for Na2Zn3(CO3)4⋅3H2O or Zn4(OH)6SO4 nH2O due to the transformation into Zn(OH)2. In NaHCO3, the polarity between zinc and steel can reverse. The effect of confinement on the cathodic current is stronger than the initial effect of patina which is explained by the instability of the patinas under rapid pH-increase.  相似文献   

2.
The effect of sodium, calcium, and magnesium chlorides deposited on zinc and carbon steel surfaces was studied under atmospheric conditions. The cations strongly affected the corrosion rate of zinc, whereas they had a significantly lower impact on the corrosion of carbon steel. The corrosivity of cations of chloride salts for zinc increased in order of Mg2+ < Ca2+ < Na+. The higher corrosion resistance of zinc treated with calcium and magnesium chlorides was connected to prevention of formation of hydrozincite during zinc exposure in wet air. It was observed that zinc weight loss and the carbonate to simonkolleite ratio in corrosion products were correlating. The principal protective effect of bivalent cations can be seen in the decrease of pH of the surface electrolyte, which was caused by hydrolysis of such cations and subsequent formation of simonkolleite that blocked the cathodic sites.  相似文献   

3.
Pitting corrosion of Type 304 stainless steel under drops of MgCl2 solution has been investigated to clarify the rusting mechanism in marine atmospheres. A pitting corrosion test was performed under the droplets with various combinations of the diameter and thickness (height) by exposure to a constant relative humidity. Probability of occurrence of pitting corrosion decreased with decreasing the diameter and thickness. Pitting corrosion progressed only when the [Cl] exceeded 6 M (RH < 65%). In almost cases, there was a small hole (∼10 μm diameter) in the center of a single pit, which may be the trace of an inclusion particle like MnS dissolved out. The pitting corrosion mechanism of Type 304 under droplets containing chloride ions has been proposed.  相似文献   

4.
Long-term atmospheric corrosion of zinc   总被引:2,自引:0,他引:2  
A great deal of information is available on the short- and mid-term atmospheric corrosion of zinc: corrosion rate data as a function of atmosphere type, corrosion mechanisms, effect of environmental variables, effect of surface orientation, damage functions, etc. However, very little information has been published on the atmospheric corrosion of zinc over long time periods (10-20 years), despite its great usefulness. On the other hand, many studies have analyzed the nature of corrosion products formed on zinc in a wide range of atmospheric environments, using different experimental techniques, but few have focused on the morphology of corrosion product layers. This paper reports the characteristics—mainly composition and morphology—of corrosion products formed on zinc panels after long-term exposure (13-16 years) in various types of atmospheres in Spain: rural, urban, industrial, mild marine and severe marine.  相似文献   

5.
A new experimental infrared reflection absorption spectroscopy (IRRAS) set-up for in-situ investigation of corrosion phenomena occurring in the metal–atmosphere interface was developed. It was applied in combination with in-situ tapping-mode atomic force microscopy (TM-AFM) and phase detection imaging (PDI) to study the early stages of corrosion of pure copper and pure zinc as well as to determine the influence of increasing zinc contents in brass. Additionally, ex-situ secondary ion mass spectrometry (SIMS) investigations were carried out on the samples after exposure.The investigations were accomplished in synthetic air with 80% relative humidity (RH) and synthetic air with 80% RH and 250 ppb SO2. The experiments showed that an increase of the zinc content in the brass alloy yields to an increase of the dimension of the corrosion features formed on the metal surface during weathering. Large features on top of smaller features were observed with TM-AFM on the surfaces exposed to SO2-containing humidified air, which could be identified by IRRAS as metal sulphur compounds. Furthermore, an increased amount of physisorbed water on the metal surfaces was determined with IRRAS in dependence of the increasing zinc content in the brass samples.  相似文献   

6.
A five-nation study has investigated the mechanisms and rates of the atmospheric corrosion of zinc and steel in tropical regions in Australia, Thailand, Indonesia, Vietnam and The Philippines. For the study, 18 exposure sites encompassing severe marine, marine, severe industrial, industrial, marine/industrial, urban and highland environments were established across the countries. At each location, zinc and steel plates were exposed for periods of three months and one year, and measurements were taken of a wide range of surface-response and climatic parameters, including gaseous SOx and NOx, airborne salinity, relative humidity (RH) and temperature, rainwater composition, surface temperature and time of wetness (TOW). Exposed plates were used to determine mass loss, the nature of corrosion products (using FTIR and SEM-EDS) and the morphologies of corrosion layers (via SEM-EDS). Regression analysis indicated that the prime factors controlling zinc corrosion rate were climate (temperature and rainfall) and surface-response (TOW), and surprisingly not pollutant levels, despite significant variation in SOx levels across the sites. SEM studies indicated the presence of pitting below the oxide layers on zinc, particularly those plates exposed at marine and other sites with relatively low SOx levels. In contrast, no pitting was observed (or pits had very low aspect ratios) in the specimens exposed at sites with high SOx levels. The possible processes leading to the observed damage patterns are discussed.  相似文献   

7.
The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layers were investigated by cathodic polarization and electrochemical impedance spectroscopy. Results indicate that the cathodic current density increases with increasing temperature, but decreases with increasing intensity of electric field. Electric field reduces the corrosion rate of PCB-Cu due to the aggressive ions migrating out from PCB-Cu electrode surface under the effect of electric field. When the ions can not freely migrate out from PCB-Cu electrode surface, local enrichment of aggressive ions under the electric field will cause serious localized corrosion of PCB-Cu.  相似文献   

8.
The acetic-acid induced atmospheric corrosion of lead was studied at 22.0 °C and 30-95% RH and at 4 °C and 95% RH. The samples were exposed to synthetic air with careful control of relative humidity, temperature, acetic acid concentration (170 ppb) and flow conditions. Reference exposures were carried out in clean humid air. Samples were analysed by gravimetry, ion chromatography, quantitative carbonate analysis, ESEM and XRD. Traces of acetic acid vapour strongly accelerate the atmospheric corrosion of lead. The corrosion rate is only weakly dependent on relative humidity in the range 95-50% RH. The accumulated amount of acetate is independent of RH in the range 95-40%. Lead corrosion in humid air in the presence of acetic acid vapour exhibits a negative correlation with temperature. The crystalline corrosion products formed on lead in the presence of acetic acid vapour were lead acetate oxide hydrate (Pb(CH3COO)2 · 2PbO · H2O) and massicot (β-PbO) together with plumbonacrite (Pb10O(CO3)6(OH)6) or hydrocerussite (Pb3(CO3)2(OH)2). The transformation of lead acetate oxide hydrate into hydrocerussite and vice versa was also studied. The mechanism of corrosion is addressed, and the implications of this study for combating the corrosion of lead organ pipes in historical organs are discussed.  相似文献   

9.
Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 μg/cm−2 NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg5 (CO3)4 (OH)24H2O) and nesquehonite (MgCO3 3H2O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH2)) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO2 and O2 to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na+ and Cl ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface.  相似文献   

10.
A photon rupture method, film removal by a focused pulse of pulsed Nd-YAG laser beam irradiation, has been developed to enable oxide film stripping at extremely high rates without contamination from the film removal tools. In the present study, Zn-55mass%Al alloy and Al-9mass%Si alloy-coated steel specimens covered with protective nitrocellulose film were irradiated with a focused pulse of a pulsed Nd-YAG laser beam at a constant potential in 0.5 kmol m−3 H3BO3-0.05 kmol m−3 Na2B4O7 (pH = 7.4) with 0.01 kmol m−3 of chloride ions to investigate the initial stage of localized corrosion. At low potentials, oxide films on both coated alloys were reformed after the nitrocellulose films were removed by this method. The oxide film formation kinetics follows an inverse logarithmic law, in agreement with Cabrera-Mott theory. However, at high potentials, localized corrosion producing corrosion products occurs at the area where nitrocellulose film was removed. Nevertheless, when the applied potential is less noble, the dissolution current of the Zn-55mass%Al-coated steel samples is higher than that of Al-9mass%Si-coated samples.  相似文献   

11.
The early stages of the evolution of atmospheric corrosion of carbon steels exposed in both a laboratory simulated and a natural atmosphere environment in Shenyang have been observed by in situ scanning electron microscopy. In the case of laboratory cyclic wet-dry tests, even though the chloride content level is very low, filiform corrosion is initiated in the early stage. The filiform corrosion grows in random directions, forming a network of ridges. White nodules nucleate and grow on the ridges during continued corrosion and eventually connect with each other to form the initial corrosion scale. Pits were also found on the surface beneath corrosion products. In the case of a natural atmospheric environment, both filiform corrosion and other localized corrosion, such as pitting and inter-granular attack take place in the initial stage. It is obvious that there is variety of localized corrosion in the initial stage of atmospheric corrosion.  相似文献   

12.
This investigation aims to analyze the effect of Cl ion on the atmospheric corrosion rate of carbon steel. The metal samples were exposed to a marine atmospheric environment (95 and 375 m from the sea line) as well as an industrial atmospheric environment. The effects of Cl ions on the protective characteristics of the rust layers were assessed by IR spectroscopy, SEM-EDAX analyses, linear polarization resistance and electrochemical impedance spectroscopy (EIS). The results show that Cl ion influences the corrosion rate, as well as the morphology and composition of the rust layer.  相似文献   

13.
A novel approach to measure the corrosion effects of aerosols as a function of their aerodynamic size and chemical composition was used to study the effects of atmospheric aerosols on mild steel at a rural coastal site. The technique uses collocated micro-orifice uniform deposition impactor samplers to deposit ambient atmospheric particles on exposure steel coupons and collect aerosol samples for ionic analyses. Rusts were found on the coupons with aerosols but none on the blank coupons even the blanks were incubated at the same conditions. FTIR analysis shows that the composition of rusts changes gradually with the aerosol particle size.  相似文献   

14.
The change of polarization curves and surface morphologies of SUS304 stainless steel was investigated in 3.5 mass% NaCl solution with or without the application of ultrasound (US). As the result, both the pitting corrosion and the crevice corrosion were largely suppressed by the application of US. The reason is attributed to the decrease in the concentration of hydrogen and chloride ions in pits or in the crevice by removing the corrosion product and stirring the liquid there.  相似文献   

15.
The roles of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel were studied by means of electrochemical impedance spectroscopy, electrochemical noise measurement and scanning electrochemical microscopy. The experimental results of electrochemical noise measurement and electrochemical impedance spectroscopy revealed that zinc phosphate exhibited inhibition effect on the corrosion of the scratched epoxy-coated steel. The scanning electrochemical microscopy results implied that the scratched surface under zinc phosphate coating was re-healed by an insulating film. The mechanism of the inhibition effect of a zinc phosphate pigment was analyzed based upon the combined stochastic theory and shot noise theory using the Weibull distribution and Gumbel distribution function.  相似文献   

16.
In this study, reinforced concrete specimens with and without mixed-in chlorides were conditioned at different relative humidities and subsequently subjected to varying temperatures. Results of the study confirmed that neither temperature nor moisture content have a major impact on the corrosion state and rate of passively corroding reinforcement. For actively corroding reinforcement, a temperature and moisture dependent corrosion rate was observed. The temperature dependency could be described by the Arrhenius equation with moisture dependent activation energies of approximately 10 kJ/mol at 75% RH and 35–40 kJ/mol above 85% RH.  相似文献   

17.
During the drying stage of the cyclic corrosion test on ferritic stainless steels in the NaCl environment, the current abruptly increased and then decreased to nearly zero, indicating that pits are initiated as the salt concentration is increased, which are then repassivated when the surface is completely dry. During the wet stage, the current remained high, suggesting that pits mainly propagate during the wet stage. In contrast, in the cyclic corrosion test in the CaCl2 environment, the current was highest during the drying stage, indicating that the electrolyte is not completely dried and corrosion mainly propagates during the drying stage.  相似文献   

18.
The corrosion resistance of an electroplated (EP) Zn coating whose surface was chemically etched to produce surface defects (pores) is investigated in this work. Impedance and DC polarisation measurements were employed to study the behaviour of such coating in various corrosive media (NaCl, NaOH and rain water). Four different faradaic relaxation processes were clearly revealed in different NaCl concentrations (from 0.1 to 1 M). In the most concentrated solutions at least three relaxation processes at low frequencies (LF) appeared and were related to zinc deposition and dissolution. At lower concentrations and depending on the pH, only one process was observed. The charge transfer resistance (Rct) and the corrosion current (Icorr) were practically stable in the pH range 5-10. In deaerated NaCl 0.1 M, the EIS diagrams showed two time constants at very close frequencies. From the EIS diagrams the porous nature of the coating was highlighted and showed that the dissolution mechanisms occurred at the base of the pores.  相似文献   

19.
Electrochemical impedance spectroscopy (EIS) technique was used to investigate atmospheric corrosion in laboratory simulated environments with variable relative humidity (RH) and fixed Cl content. The results show the suitability of EIS for analyzing electrochemical corrosion behaviour at 5-100% RH. At 5-30% RH, EIS spectra reflected the character of the electrode, whereas at 40-100% RH, the model of EIS spectra was established with the help of surface analysis. From 70% RH, the film resistance (Rr) reflects the degree of corrosion and the charge transfer resistance (Rt) provides quantitative representation of the corrosion rate, which were verified by weight loss tests.  相似文献   

20.
This work presents a study of the initial instants in the pitting corrosion of AISI 1040 steel, analyzed by temporal series micrographs coupled to an open circuit potential (Eoc) and polarization curves. During the Eoc measurement, the pit induction time and the initial pit growth in MnS inclusions was detected in alkaline sulfide solution. The pit area behavior has two distinct rate of area changes in specific regions directly associated to current slope changes. Finally, it was possible to create a three-dimensional model of the pit depth evolution on the metal, using Faraday’s law and the bullet-shaped geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号