首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heat exchanger for continuously subcooling liquid nitrogen in contact with a regenerative cryocooler is analytically investigated as a next step of our recent experimental works. Since the coldhead of regenerative cryocooler has a limited surface area, a cylindrical copper cup is attached as extended surface, and a tube for liquid flow is spirally wound and brazed on the exterior surface of cylinder. Different sizes of heat exchangers are fabricated and tested with a single-stage GM cooler to cool liquid nitrogen from 78 K to 66 K. Analytical model is developed for the heat exchanger effectiveness and thermal resistance, and the results are compared with the experimental data. It is concluded that there exists an optimum for the height and diameter of cylindrical heat exchanger to maximize the cooling rate with a given unit of cryocooler.  相似文献   

2.
《低温学》2003,43(10-11):589-596
Heat transfer analysis on a newly proposed cryogenic cooling system is performed for HTS transformers to be operated at 63–66 K. In the proposed system, HTS pancake windings are immersed in a liquid nitrogen bath where the liquid is cooled simply by colder copper sheets vertically extended from the coldhead of a cryocooler. Liquid nitrogen in the gap between the windings and the copper sheets develops a circulating flow by buoyancy force in subcooled state. The heat transfer coefficient for natural convection is estimated from the existing engineering correlations, and then the axial temperature distributions are calculated analytically and numerically with taking into account the distributed AC loss in the windings and the thermal radiation on the walls of liquid-vessel. The calculation results show that the warm end of the HTS windings can be maintained at only 2–3 K above the freezing temperature of nitrogen, with acceptable values for the height of HTS windings and the thickness of copper sheets. It is concluded that the cooling by natural convection of subcooled liquid nitrogen can be an excellent option for compactness, efficiency, and reliability of HTS transformers.  相似文献   

3.
Natural convection heat transfer from a vertical cylinder immersed in slush and subcooled liquid nitrogen and subjected to constant heat fluxes was investigated in order to determine the relative merits of slush nitrogen (SlN2) for immersion cooling. A glass dewar was used as a test vessel in which a cylindrical heater was mounted vertically, and heat transfer measurements were carried out for SlN2 and subcooled liquid nitrogen (LN2) in the laminar flow range. The results revealed advantages of SlN2 over subcooled LN2 in natural convection cooling. The local temperatures of the heated surface surrounded by solid nitrogen particles are measured to increase at much slower rates than in subcooled LN2, which is due to the latent heat of fusion of solid nitrogen. Even after the solid nitrogen particles surrounding the heater are apparently depleted, the average heat transfer coefficients for SlN2 are still found to be greater than those for LN2 with the improvement in heat transfer being larger for lower Grashof number regime. Our analysis also indicates that solid nitrogen particles in close proximity to heated surface do not discourage local convection due to the porous nature of SlN2, making the heat transfer in SlN2 more effective than in the case of solid–liquid phase change of nitrogen involving melting and conduction processes.  相似文献   

4.
《低温学》2003,43(10-11):597-602
Subcooled liquid nitrogen is a good cooling medium of high temperature superconducting (HTS) electric power systems such as an electric power line and a power transformer. To produce subcooled liquid nitrogen, a cryocooler is used and a circulation pump is installed in the system. Several subcooled liquid nitrogen circulation systems were constructed and tested. Those are used as a refrigerator for HTS power systems. The pressure of subcooled liquid nitrogen is maintained at atmospheric pressure (0.108 MPa) and the working temperature is 68 K. One system of HTS power transformer was tested in distribution power line. In each case, the temperature of the cold head of the cryocooler is kept at 64 K little above nitrogen freezing temperature. For the stable operation, the system must work even in the case of shaking condition by earthquake, the pressure must be stable and be kept at atmospheric pressure.  相似文献   

5.
In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.  相似文献   

6.
Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was first measured at the pressure of 0.7 MPa for wide ranges of flow rates and liquid temperatures. The heat transfer coefficients in non-boiling regime for each flow velocity were well in agreement with the Dittus–Boelter equation. The heat fluxes at the inception of boiling and the departure from nucleate boiling (DNB) heat fluxes are higher for higher flow velocity and subcooling. It was found that the trend of dependence of the DNB heat flux on flow velocity was expressed by the correlation derived by Hata et al. based on their data for subcooled flow boiling of water, although it has different propensity to subcooling.  相似文献   

7.
Heat Transfer from a Local Heat Source to Subcooled Liquid Film   总被引:5,自引:0,他引:5  
An experimental investigation is performed of heat transfer from a local heat source to films of water and low-boiling dielectric liquid that flow down a vertical plate by gravity. The liquids are substantially subcooled. In the case of perfluorotriethylamine flow, regular structures are formed in the film at the threshold value of the heat flux density. After the heated layer of liquid comes to the film surface, three characteristic modes of heat transfer are observed, which are associated with the variation of the modes of liquid flow caused by thermocapillary convection. At low values of the Reynolds number of the film, a specific form of critical heat transfer is observed, which is characterized by disintegration of the jet into droplets and their separation from the heater.  相似文献   

8.
K. Hama  M. Shiotsu 《低温学》2007,47(4):209-219
Film boiling heat transfer coefficients were measured on 10, 30 and 50 mm long vertical plates in subcooled He II for bulk liquid temperatures from 1.8 to 2.1 K. A film boiling model on a vertical plate in subcooled He II was presented based on convection heat transport in the vapor film, radiation heat transport, and heat transport in He II. The numerical solutions of the model were obtained and an equation which can express the numerical solutions within ±5% difference was derived. The equation predicted well the experimental data for lower ΔT range but significantly under-predicted the data for higher ΔT. A correlation of film boiling heat transfer including radiation contribution was presented by modifying the equation based the experimental data. This correlation can describe the experimental data within ±20% difference.  相似文献   

9.
本文建立了以R134a为冷却工质的封闭式喷雾冷却系统,研究了工质过冷度、质量流量和热流密度对喷雾冷却系统换热性能的影响。其中,工质过冷度由喷嘴入口前的过冷段控制,质量流量通过变频齿轮泵调节,热流密度通过改变加热电源电压和电流控制。实验结果表明,在热流密度和质量流量保持不变时,改变过冷度对热源表面温度和换热系数的影响并不明显;在热流密度和过冷度保持不变的条件下,系统存在一个临界质量流量值,在质量流量达到临界值之前,热源表面温度随质量流量的增大而降低,当质量流量高于临界值时,热源表面温度随质量流量的增大而升高;当质量流量和过冷度保持不变时,存在一个热流密度使液滴的蒸发量等于补充量,在此热流密度下热源表面系数能达到最大。  相似文献   

10.
Chinh T. Nguyen 《低温学》2010,50(9):529-533
Cooling distribution is a vital technology concerning cryogenic thermal management systems for many future space applications, such as in-space, zero boil-off, long-term propellant storage, cooling infrared sensors at multiple locations or at a distance from the cryocooler, and focal-plane arrays in telescopes. These applications require a cooling distribution technology that is able to efficiently and reliably deliver cooling power (generated by a cryocooler) to remote locations and uniformly distribute it over a large-surface area. On-going efforts by others under this technology development area have not shown any promising results.This paper introduces the concept of using a Resonant Self-Pumped Loop (RSPL) integrated with the proven, highly efficient pulse tube cryocooler. The RSPL and pulse tube cryocooler combination generates cooling power and provides a distributive cooling loop that can be extended long distances, has no moving parts, and is driven by a single linear compressor. The RSPL is fully coupled with the oscillating flow of the pulse tube working fluid and utilizes gas diodes to convert the oscillating flow to one-directional (DC) steady flow that circulates through the cooling loop. The proposed RSPL is extremely simple, lightweight, reliable, and flexible for packaging. There are several requirements for the RSPL to operate efficiently. These requirements will be presented in this paper. Compared to other distributive cooling technologies currently under development, the RSPL technology is unique.  相似文献   

11.
为在液氮温区工作的高温超导滤波器的制冷机冷源选型,基于Sage 10软件对超导滤波器件的冷却装置进行了漏热分析,仿真计算了铜线和同轴线的几何参数对传导漏热量的影响,以及真空罩、冷盘的尺寸和发射率对辐射漏热量的影响,并综合上述分析计算了超导滤波系统的总漏热量。在仿真计算中发现,信号线的导热和真空罩中冷盘的辐射漏热在系统总漏热量中起主导作用。仿真计算结果表明,通过增大信号线长度、减小信号线直径的方式可将信号线漏热量降至0.72 W,约为初始导热量的1/3。与此同时,冷盘表面采用抛光镀金的方式减小表面发射率,使辐射漏热量降至原来的2/3。根据模拟计算的最优结果,选择制冷量为3 W@77 K的制冷机作为高温超导滤波器的冷源。  相似文献   

12.
The thermal conductivity of liquid oxygen below 80 K and pressures up to 1 MPa has been measured using a horizontal, guarded, flat-plate calorimeter. The working equation of the calorimeter is based on the one-dimensional Fourier’s law. The gap between the calorimeter plates was measured in situ from a capacitance measurement. The cooling power to the calorimeter is provided by a two-stage Gifford-McMahan cryocooler. The absolute temperatures are measured using platinum resistance thermometers. The results are compared to existing data and analytical models.  相似文献   

13.
Forced convection boiling of liquid nitrogen in a smooth horizontal copper tube with 14 mm id has been studied experimentally. The measured local heat transfer coefficients in nucleate boiling depend on the heat flux as well as on the mass flow rate. Furthermore, the influence of the vapour quality cannot be neglected.Our own experimental heat transfer data were correlated by an empirical equation. Mass flow rate, pressure, and diameter dependence of para-hydrogen data of other authors can also be correlated with this equation. A relationship for the critical heat flux is also given.  相似文献   

14.
A. Khalil 《低温学》1983,23(2):67-71
The present study investigates the influence of partial restrictions on the axial heat transport and critical heat flux limits in subcooled superfluid helium (helium II) channels. Different size orifices are used to simulate partial plugging of superconducting magnets cooling channels by frozen oxygen, nitrogen, hydrogen, neon or moisture during the cool down process. Thin stainless steel sharp edged orifices of sizes 0.5, 1, 2 and 5 mm id are mounted between stainless steel flanges attached to 9 mm diameter (helium II) channel. The helium II channel is heated at one end with a copper block heater while the other end heat sinks to an atmospheric superfluid helium heat exchange. Temperature drop across the restriction is measured by two calibrated carbon resistors. Measurements are carried out at both temperatures ranging from 1.8 to 2.2 K.As the orifice/channel area ratio decreases, data show a considerable decrease in the axial heat transported by internal convection process resulting in lower critical heat flux at the phase transition from helium II to helium I by the destruction of superfluidity and inititation of boiling. A linear correlation between critical channel heat flux and orificeI channel area ratio gives a good fit to the experimental data. For heat fluxes higher than the critical heat flux, transient temperature measurements for a step heat input are correlated with the time required to reach the phase transition.  相似文献   

15.
High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.  相似文献   

16.
Summary An investigation is undertaken of the unsteady response of two-dimensional laminar free convection boundary layer flow of a viscous incompressible fluid along a semi-infinite vertical heated plate where the mean surface heat flux oscillates with a small amplitude about a steady profile. The buoyancy forces are favourable, resulting from a positive flux of heat from the surface of the plate into the fluid. The interaction of the time-periodic heat flux with the usual boundary-layer flow is examined by using a linearized theory. Solutions are obtained using three distinct methods, namely an extended series expansion method for low frequencies, an asymptotic series expansion method for high frequencies and a fully numerical finite difference method for general frequencies. Calculations have been carried out for a wide range of parameters to examine the solutions in terms of the amplitude and phase angle of the fluctuating parts of the surface shear stress and the surface temperature. It has been found that the amplitude and phase angle of both the shear stress and the surface temperature predicted by these three methods are in very good agreement in their respective ranges of validity.  相似文献   

17.
Summary The problem of heat transfer in the unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid has been investigated. Both constant surface temperature and constant surface heat flux conditions have been considered. The nonlinear coupled partial differential equations governing the flow have been solved numerically using the Keller box method and the Nakamura method which both give closely similar solutions. The results indicate that the cooling rate of the sheet can be enhanced by increasing the buoancy parameter or the velocity of the sheet. It is found that a better cooling performance could be achieved by using a liquid as a cooling medium rather than a gas. The overshoot in the velocity occurs near the surface when the buoyancy parameter exceeds a certain critical value.  相似文献   

18.
The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.  相似文献   

19.
P. Zhang  G.H. Xu  X. Fu  C.R. Li 《低温学》2011,(6):300-308
Jet impingement of liquid nitrogen owns many applications in the cryogenic cooling aspects, such as, cooling of high-power chips in the electronic devices and cryoprobes in the cryosurgery. In the present study, we systematically investigated the confined jet impingement of liquid nitrogen from a tube of about 2.0 mm in diameter onto the heat transfer surfaces of about 5.0 mm in basement diameter with different heat transfer surface geometries and conditions, i.e., flat surface, hemispherical surface and flat surface with a needle. The effects of many influential factors, such as, the geometry of the heat transfer surface, jet velocity, distance between the nozzle exit and heat transfer surface, heat transfer surface condition, and some other, on the heat transfer were investigated. The heat transfer correlations were also proposed by using the experimental data, and it was found that the heat transfer mechanism of liquid impingement in the confined space was dominated by the convective evaporation rather than the nucleate boiling in the present case. The critical heat flux (CHF) of the confined jet impingement was measured and the visualization of the corresponding flow patterns of the confined jet impingement of liquid nitrogen was also conducted simultaneously to understand the heat transfer phenomena.  相似文献   

20.
A numerical solution for the free convection flow past a vertical semi-infinite flat plate embedded in a highly saturated porous medium by allowing the plate to have a non-uniform temperature or a non-uniform heat flux distributions has been developed. Both local heat transfer rate and excess surface temperature as a function of the distance along the plate are tabulated for a few cases of prescribed wall temperature and heat flux distributions. Such tabulations serve as a reference against which other approximate solutions can be compared in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号