共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion rate of electropolished 304 stainless steel surfaces (UNS S30400) is found to be lower by more than a factor of three relative to that determined previously for machined surfaces in mildly alkaline, hydrogenated water at 260 °C. This favorable result is attributed to significant changes in nanocrystallinity of the corrosion oxide layer caused by the removal of surface microstrain, which had been imparted during the machining process. In the absence of microstrain, a low-porosity, protective, corrosion layer forms that is composed of extremely small and uniformly-sized spinel oxide crystals. Application of scanning electron microscopy (FEG-SEM), X-ray diffraction and X-ray photoelectron spectroscopy (XPS) in conjunction with ion milling and target factor analyses, found the corrosion layer to consist of micrometer-size crystals of a ferrite-based spinel oxide (non-protective) over-laying nanometer-size crystals of a chromite-based spinel oxide (protective). Composition of both phases is unchanged from that previously observed on corroded, machined surfaces and is representative of solvus phases in the immiscible Fe(Fe1−nCrn)2O4 spinel binary. The smaller size (10 vs. 26 nm) and greater surface density (∼10,000 vs. 835 μm−2) of the chromite-based crystals relative to those formed on machined (i.e., cold-worked) surfaces, however, is consistent with the absence of preferred high energy nucleation sites on strain-free surfaces. Therefore, electropolishing, which removes surface microstrain induced by cold-working, represents a preferred reference surface condition. 相似文献
2.
Zinc treatment effects on corrosion behavior of Alloy 600 in high temperature, hydrogenated water 总被引:2,自引:0,他引:2
Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 °C were found to reduce the corrosion rate of Alloy 600 (UNS N06600) by about 40% relative to a non-zinc baseline test [S.E. Ziemniak, M. Hanson, Corros. Sci., in press, doi:10.1016/j.corsci.2005.01.006]. Characterizations of the corrosion oxide layer via SEM/TEM and grazing incidence X-ray diffraction confirmed the presence of a chromite-rich oxide phase and recrystallized nickel. The oxide crystals had an approximate surface density of 3500 μm−2 and an average size of 11 ± 5 nm. Application of X-ray photoelectron spectroscopy with argon ion milling, followed by target factor analyses, permitted speciated composition versus depth profiles to be obtained. Numerical integration of the profiles revealed that: (1) alloy oxidation occurred non-selectively and (2) zinc(II) ions were incorporated into the chromite-rich spinel: (Zn0.55Ni0.3Fe0.15)(Fe0.25Cr0.75)2O4. Spinel stoichiometry places the trivalent ion composition in the single phase oxide region, consistent with the absence of the usual outer, ferrite-rich solvus layer. By comparison with compositions of the chromite-rich spinel obtained in the non-zinc baseline test, it is hypothesized that zinc(II) ion incorporation was controlled by the equilibrium for
0.55Zn2+(aq)+(Ni0.7Fe0.3)(Fe0.3Cr0.7)2O4(s)?0.40Ni2+(aq)+0.15Fe2+(aq)+(Zn0.55Ni0.3Fe0.15)(Fe0.3Cr0.7)2O4(s) 相似文献
3.
The oxide film on 304 stainless steel exposed to the hydrothermal environments at 573.15 K up to 20 days without/with 10 ppb Zn injection has been investigated ex situ by X-ray photoelectron spectroscopy (XPS). ZnFe2O4 and ZnCr2O4 were found to be formed in the oxide film at the initial stage of immersion by substitution reaction between Zn2+ and Fe2+, and ZnCr2O4 became dominant after long-term immersion. The calculations of potential-pH diagrams, solubilities and crystallographic features of spinels have been done to evaluate the oxide film structure and the inhibition mechanism caused by Zn injection. 相似文献
4.
The microstructural characteristics of oxide scale formed on type 304 stainless steel in oxygenated high temperature water have been investigated. From outer to inner layer, the oxide scale consists of faceted spinel particles, irregularly shaped hematite particles and a compact layer of nano-sized spinels. Some outmost spinels formed on top of other particles are depleted in Cr, while the hematite particles tightly embedded into the inner layer contain more Cr in the inner than in the outer part. The inner nano-sized oxide grow inwards directly from the bottom of outer particles. The related oxidation mechanism is discussed. 相似文献
5.
Characteristics of oxide films formed on 304 stainless steel under alternately changing Ni2+ concentrations in oxygenated high temperature water were examined. Oxides preformed under low Ni2+ concentration evolve from hematite to spinel after subsequent immersion under high Ni2+ concentration. Meanwhile, Ni content in the surface layer of oxide rises up while Fe content drops. Oxide films preformed under high Ni2+ concentration show little change in phase composition after subsequent immersion under low Ni2+ concentration. Fe contents in surface layer rise up while the change of Ni contents depends on the original phase composition and whether residual Ni2+ is present. 相似文献
6.
During the high temperature oxidation of as-cast Type 304 stainless steel there is a complex growth pattern of the oxide layers which is shown to be dependent on; alloy composition and local segregation, surface finish, temperature and atmosphere. Of interest is the appearance of whisker growth morphologies which grow in excess of 10 μm in length and at random orientations to the sample surface. This paper illustrates these features and discusses the formation mechanism in terms of the oxide microstructure. 相似文献
7.
Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution 总被引:1,自引:0,他引:1
The paper mainly investigated the effects of temperature on the oxide film properties of 304SS in lithium borate buffer solution by electrochemical measurements and XPS analysis. As temperature increased, the protective property of the film degraded and structure varied from a single layer to a double-layer. Whatever the temperature, the oxide film exhibited an n-type and p-type semiconductor in the potential range above and below the flat band potential, respectively. The electronic properties were assigned to a Fe–Cr spinel inner layer and a defective Fe–Cr oxide outer layer. The related growth mechanisms of the oxide film were also discussed. 相似文献
8.
The high-temperature oxidation of bulk nanocrystalline 304 stainless steel (BN-SS304) and its conventional polycrystalline counterpart (CP-SS304) in air at 900 °C for 24 h were studied by thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscope. We studied the valence electron configurations of BN-SS304, CP-SS304 and their oxide scales by ultra-violet photoelectron spectroscopy. The high-temperature oxidation resistance of BN-SS304 was enhanced in both initial and isothermal oxidation, which was attributed to its larger work function and more chemical stability, its more chemically stable and compact oxide scale, its weaker O2 adsorption and diffusion, its weaker Cr and Mn atoms diffusions. 相似文献
9.
The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 °C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm−2 h−1/2. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni0.7Fe0.3)(Fe0.3Cr0.7)2O4, while the outer layer is (Ni0.9Fe0.1)(Fe0.85Cr0.15)2O4. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe3O4-FeCr2O4 (or NiFe2O4-NiCr2O4). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase. 相似文献
10.
To investigate the initiation behavior of stress corrosion cracking (SCC) for sensitized Type 304 stainless steel in high temperature water, a constant load SCC test method combined with in situ crack observation technique was employed. The in situ crack observation system allowed us to detect small cracks of at least 100 μm. As a result, a fracture time decreased with an increase in an applied stress. The first cracks were observed at most 3 h before the specimen was fractured under all the stress conditions. After that, many cracks were initiated in a short time to fracture. The fracture was caused by coalescence of multiple cracks rather than by growth of some primary cracks. The simulation model for surface crack initiation was newly developed using a Monte Carlo method, which was based on damage mechanics and stress analysis around the existing cracks. The simulation could represent the empirical results of changes in the crack distribution and the cumulative number of cracks during the SCC tests. It was concluded, therefore, that the crack initiation process should be considered in simulating the life prediction of the material in this SCC system. 相似文献
11.
Characteristics of the oxide films formed on 304 stainless steel exposed to 290 °C oxygenated water in a nickel-lined autoclave were examined. The oxides evolve from dominating irregularly shaped hematite to faceted spinels with increasing immersion time. The surface layer of oxide film is first Cr-enriched and then Ni-enriched as immersion time increases. The oxides nucleate by solid-state reactions with selective dissolution of Fe and Ni, and then grow up through precipitation of cations from solution. Nickel ions dissolved from the nickel lining could promote the stability of NiFe2O4 spinel and influence the oxidation behaviour of 304 stainless steel significantly. 相似文献
12.
Corrosion resistant structural materials of both iron and nickel based alloys are used in the electric power industry for the construction of the coolant loops of both conventional and nuclear power generating stations. These materials, in the presence of high temperature (e.g. 287 °C), high pH (e.g. 10.0 at 20 °C) water with dissolved hydrogen will oxidize and form corrosion films that are double metal oxides (or spinels) of the form AB2O4. This work describes optical reflectivity techniques that have been developed to study the growth of these films in situ. The optical technique uses a dual-beam specular reflection spectrometer to measure the spectrum of reflected light in small angle (i.e. <15°) scatter. The reflection spectra are then calibrated using a set of corrosion coupons with corrosion films that are well known. Results are compared with models based on multilayer reflection and Mie scattering from a particle size distribution. Surface roughness is found to be the dominant cause of reduced reflection as the films grow. 相似文献
13.
Although many studies have been carried out regarding the role of sulphide anions in promoting microbial corrosion of various metal substrates, very little is known about the differences between inorganic sulphide and biogenically-derived sulphide by sulphate-reducing bacteria (SRB) and what the reasons for differing corrosion behaviour between the two types of sulphide may be towards common metals. In this study, various electrochemical and surface analytical techniques were employed to study the effect of the inorganic and biogenic sulphide (active SRB present) on the surface chemistry and corrosion behaviour of 304 stainless steels in a simulated seawater-based modified Baar’s (SSMB) medium. Clear differences in the surface chemistry of the sulphurised passive film by inorganic and biogenic sulphide (active SRB present) were quantified by X-ray photoelectron spectroscopy (XPS). The transformation of metal sulphides in abiotic and biotic sulphide solutions with the exposure time was correlated with different corrosion behaviour of 304 stainless steels. 相似文献
14.
Corrosion behaviour of type 304 stainless steel was investigated, with particular attention to additive effects of hydrosulphite (Na2S2O4) on corrosion in 0.1 mol/l H2SO4 solution with various amounts of Na2S2O4 up to 60 mmol/l.Corrosion of SUS304 occurred below pH 3.0 at 30 °C in a 0.1 mol/l H2SO4 solution in which Na2S2O4 was added to 0.1-20 mmol/l. The maximum corrosion rate at 30 °C was measured as 7.2 g/m2 h (7.9 mm/y) in 0.1 mol/l H2SO4-10 mmol/l Na2S2O4 at pH 1.2. Microscopic surface observation revealed that active dissolution was accompanied by intergranular corrosion at the metal surface.The SUS304 was easily passivated in 0.1 mol/l H2SO4 solution with more than 30 mmol/l Na2S2O4. NiS was detected in the passivated film. 相似文献
15.
The effects of pH values from 6.9 to 7.4 on oxide films for 316L stainless steel in borated and lithiated high temperature water at 573.15 K without and with Zn injection were examined by in situ potentiodynamic polarization curves, electrochemical impedance spectra and ex situ X-ray photoelectron spectroscopy (XPS) analysis. The composition of oxide films appears slightly pH dependent: rich in chromites and ferrites at pH = 6.9 and pH = 7.4, respectively. The corrosion rate decreases significantly in the high pH value solution with Zn injection due to the formation of compact oxide films. The solubilities and structural model of oxides are proposed and discussed. 相似文献
16.
The oxide scales of 316 stainless steel (316 SS) have been examined after exposure to supercritical water (SCW) with 2.0% H2O2 for up to 250 h. The exposed samples were analyzed using weight measurement, scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). It was found that mass gain of all samples increased with increasing temperature and exposure time. Higher temperature SCW resulted in rougher surfaces and thicker oxide scales. Duplex layer oxide structures with Ni-enrichment at the oxide/metal interface developed on all samples exposed to SCW, which were identified as Fe2O3/Fe3O4 + spinel/Cr2O3/Ni-enrichment/316 SS from the outer to inner layer. The possible oxidation mechanisms are also discussed. 相似文献
17.
Acoustic emission (AE) during pitting corrosion of 304 stainless steel (304 SS) in H2SO4 solutions with different pH values and Cl− concentrations was studied. Two types of AE signals are detected in all solutions. Each type of signals is characterized by AE parameters (rise time, counts number, duration and amplitude) and waveform carefully. It is believed that the hydrogen bubbles evolution inside the pits is the AE source. 相似文献
18.
TiC particle-reinforced 304 stainless steels were prepared using a new developed in situ technology and their corrosion behavior was compared with that of 304SS in 5 wt.% HCl solution. As compared to 304SS, Ecorr, Epit and Erp values had shifted to a more negative region in 304SS containing TiC, indicating faster corrosion rate by TiC addition. The addition of TiC particles to 304SS resulted in no rapid pit propagation but maintained a high corrosion rate in the whole immersion time investigated. 相似文献
19.
20.
The electrochemical behaviour of high nitrogen stainless steel in acidic solutions was studied by potentiodynamic polarization, EIS, Mott-Schottky and XPS. The passive film formed in neutral NaCl solution was very stable, but the stability of the film decreased with the addition of H2SO4 into the solution. The passive film formed in acidic Na2SO4 has a superior protective ability than that in acidic NaCl solution. The stability of the film formed in tested solution decreased with increase of applied potentials. The film formed on steel surface was of n-type semiconductor. Chloride penetration mechanism was proposed for the observed passive film breakdown. 相似文献