首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple and scalable technique for the fabrication of solution processed and local-gated carbon nanotube field effect transistors (CNT-FETs). The approach is based on the directed assembly of individual single-walled carbon nanotubes from dichloroethane via AC dielectrophoresis (DEP) onto pre-patterned source and drain electrodes with a local aluminum gate in the middle. Local-gated CNT-FET devices display superior performance compared to a global back gate with on-off ratios >10(4) and maximum subthreshold swings of 170?mV/dec. The local bottom-gated DEP-assembled CNT-FETs will facilitate large-scale fabrication of complementary metal-oxide-semiconductor (CMOS) compatible nanoelectronic devices.  相似文献   

2.
We report strategies to achieve both high assembly yield of carbon nanotubes at selected positions of the circuit via dielectrophoresis (DEP) and field effect transistor (FET) yield using an aqueous solution of semiconducting-enriched single-walled carbon nanotubes (s-SWNTs). When the DEP parameters were optimized for the assembly of individual s-SWNTs, 97% of the devices showed FET behavior with a maximum mobility of 210 cm2 V(-1) s(-1), on-off current ratio ~10(6) and on-conductance up to 3 μS, but with an assembly yield of only 33%. As the DEP parameters were optimized so that one to five s-SWNTs are connected per electrode pair, the assembly yield was almost 90%, with ~90% of these assembled devices demonstrating FET behavior. Further optimization gave an assembly yield of 100% with up to 10 SWNTs per site, but with a reduced FET yield of 59%. Improved FET performance including higher current on-off ratio and high switching speed were obtained by integrating a local Al2O3 gate to the device. Our 90% FET with 90% assembly yield is the highest reported so far for carbon nanotube devices. Our study provides a pathway which could become a general approach for the high yield fabrication of complementary metal oxide semiconductor (CMOS)-compatible carbon nanotube FETs.  相似文献   

3.
We report on reversible metal to insulator transitions in metallic single-walled carbon nanotube devices induced by repeated electron irradiation of a nanotube segment. The transition from a low-resistive, metallic state to a high-resistive, insulating state by 3 orders of magnitude was monitored by electron transport measurements. Application of a large voltage bias leads to a transition back to the original metallic state. Both states are stable in time, and transitions are fully reversible and reproducible. The data is evidence for a local perturbation of the nanotube electronic system by removable trapped charges in the underneath substrate and excludes structural damage of the nanotube. The result has implications for using electron-beam lithography in nanotube device fabrication.  相似文献   

4.
Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.  相似文献   

5.
We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confi rmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

6.
Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.  相似文献   

7.
We report a method to controllably alter the diameter of an individual carbon nanotube. The combination of defect formation via electron irradiation and simultaneous resistive heating and electromigration in vacuum causes the nanotube to continuously transform into a high-quality nanotube of successively smaller diameter, as observed by transmission electron microscopy. The process can be halted at any diameter. Electronic transport measurements performed in situ reveal a striking dependence of conductance on nanotube geometry. As the diameter of the nanotube is reduced to near zero into the carbon chain regime, we observe negative differential resistance.  相似文献   

8.
In order to optimize the chemical vapor deposition process for fabrication of carbon nanotube/Al composite powders, the effect of different reaction conditions (such as reaction temperature, reaction time, and reaction gas ratio) on the morphological and structural development of the powder and dispersion of CNTs in Al powder was investigated using transmission electron microscope. The results showed that low temperatures (500-550 °C) give rise to herringbone-type carbon nanofibers and high temperatures (600-630 °C) lead to multi-walled CNTs. Long reaction times broaden the CNT size distribution and increase the CNT yield. Appropriate nitrogen flow is preferred for CNT growth, but high and low nitrogen flow result in carbon nanospheres and CNTs with coarse surfaces, respectively. Above results show that appropriate parameters are effective in dispersing the nanotubes in the Al powder which simultaneously protects the nanotubes from damage.  相似文献   

9.
Bindl DJ  Wu MY  Prehn FC  Arnold MS 《Nano letters》2011,11(2):455-460
We have employed thin films of highly purified semiconducting carbon nanotubes as near-infrared optical absorbers in heterojunction photovoltaic and photodetector devices with the electron acceptor C(60). In comparison with previous implementations of more electrically heterogeneous carbon nanotube/C(60) devices, we have realized a 10× gain in zero-bias quantum efficiency (QE) and even more substantial gains in power conversion efficiency (η(p)). The semiconducting nanotube/C(60) heterojunctions are highly rectifying with a peak external QE, internal QE, and η(p) of 12.9 ± 1.3, 91 ± 22, and 0.6%, respectively, in the near-infrared. We show that the device efficiency is determined by the effective length scale for exciton migration in the nanotube films, confirm the high internal QE via photoluminescence quenching, and demonstrate that the driving force for exciton dissociation at the fullerene-fullerene heterointerface is optimized for diameters <1.0 nm. These results will guide the development of next-generation high-performance carbon nanotube-based solar cells and photosensitive devices.  相似文献   

10.
We present the fabrication and electrical characterization of a flexible hybrid composite structure using aligned multiwall carbon nanotube arrays in a poly(dimethylsiloxane) (PDMS) matrix. Using lithographically patterned nanotube arrays, one can make these structures at any length scale from submicrometer levels to bulk quantities. The PDMS matrix undergoes excellent conformal filling within the dense nanotube network, giving rise to extremely flexible conducting structures with unique electromechanical properties. We demonstrate its robustness against high stress conditions, under which the composite is found to retain its conducting nature. We also demonstrate that these structures can be utilized directly as flexible field-emission devices. Our devices show some of the best field-enhancement factors and turn-on electric fields reported so far.  相似文献   

11.
The noise properties of single-walled carbon nanotube transistors (SWNT-FETs) are essential for the performance of electronic circuits and sensors. Here, we investigate the mechanism responsible for the low-frequency noise in liquid-gated SWNT-FETs and its scaling with the length of the nanotube channel down to the nanometer scale. We show that the gate dependence of the noise amplitude provides strong evidence for a recently proposed charge-noise model. We find that the power of the charge noise scales as the inverse of the channel length of the SWNT-FET. Our measurements also show that surprisingly the ionic strength of the surrounding electrolyte has a minimal effect on the noise magnitude in SWNT-FETs.  相似文献   

12.
Ko H  Tsukruk VV 《Nano letters》2006,6(7):1443-1448
We introduce a simple solution-based method for the fabrication of highly oriented carbon nanotube (CNT) arrays to be used for thin-film transistors. We exploit the liquid-crystalline behavior of a CNT solution near the receding contact line during tilted-drop casting and produced long-range nematic-like ordering of carbon nanotube stripes caused by confined micropatterned geometry. We further demonstrate that the performance of thin-film transistors based on these densely packed and uniformly oriented CNT arrays is largely improved compared to random CNTs. This approach has great potential in low-cost, large-scale processing of high-performance electronic devices based on high-density oriented CNT films with record electrical characteristics such as high conductance, low resistivity, and high career mobility.  相似文献   

13.
本文主要就近几年来碳纳米管、增强聚合物复合材料制备及其力学性能、摩擦磨损性能影响方面研究进展,作一简要介绍.  相似文献   

14.
Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.  相似文献   

15.
Individual carbon nanotube (CNT) field emission characteristics present a number of advantages for potential applications in electron microscopy and electron beam lithography. Mechanical and electrical reliability of individual CNT cathodes, however, remains a challenge and thus device integration of these cathodes has been limited. In this work, we present an investigation into the reliability issues concerning individual CNT field emission cathodes. We also introduce and analyze the reliability of a novel individual CNT cathode. The cathode structure is composed of a multi-walled carbon nanotube (MWNT) attached by Joule heating to a nickel-coated Si microstructure. The junction of the CNT and the Si microstructure is mechanically and electrically robust to withstand the strong electric field conditions that are typical for field emission devices. An optimal Ni film coating of 25?nm on the Si microstructure is required for mechanical and electrical stability. Experimental current-voltage data for the new cathode structure definitively demonstrates carbon nanotube field emission. Additionally, we demonstrate that our new nanofabrication method is capable of producing sophisticated cathode structures that were previously not realizable, such as one consisting of two parallel MWNTs, with highly controlled CNT lengths with 40?nm accuracy and nanotube-to-nanotube separations of less than 10?μm.  相似文献   

16.
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity‐generation sectors, and manufacturing processes. Thermal energy is also an abundant low‐flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off‐grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric‐energy‐harvesting devices. Carbon‐based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source‐materials, their amenability to high‐throughput solution‐phase fabrication routes, and the high specific energy (i.e., W g?1) enabled by their low mass. Single‐walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric‐energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube‐based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon‐nanotube‐based materials and composites have for producing high‐performance next‐generation devices for thermoelectric‐energy harvesting.  相似文献   

17.
Kim S  Jinschek JR  Chen H  Sholl DS  Marand E 《Nano letters》2007,7(9):2806-2811
We present a simple, fast, and practical route to vertically align carbon nanotubes on a porous support using a combination of self-assembly and filtration methods. The advantage of this approach is that it can be easily scaled up to large surface areas, allowing the fabrication of membranes for practical gas separation applications. The gas transport properties of thus constructed nanotube/polymer nanocomposite membranes are analogous to those of carbon nanotube membranes grown by chemical vapor deposition. This paper shows the first data for transport of gas mixtures through carbon nanotube membranes. The permeation of gas mixtures through the membranes exhibits different properties than those observed using single-gas experiments, confirming that non-Knudsen transport occurs.  相似文献   

18.
In order to be useful as microelectromechanical devices, carbon nanotubes with well-controlled properties and orientations should be made at high density and be placed at predefined locations. We address this challenge by hierarchically assembling carbon nanotubes into closely packed and highly aligned three-dimensional wafer films from which a wide range of complex and three-dimensional nanotube structures were lithographically fabricated. These include carbon nanotube islands on substrates, suspended sheets and beams, and three-dimensional cantilevers, all of which exist as single cohesive units with useful mechanical and electrical properties. Every fabrication step is both parallel and scalable, which makes it easy to further integrate these structures into functional three-dimensional nanodevice systems. Our approach opens up new ways to make economical and scalable devices with unprecedented structural complexity and functionality.  相似文献   

19.
Advanced composites, such as those used in aerospace applications, employ a high volume fraction of aligned stiff fibers embedded in high-performance polymers. Unlike advanced composites, polymer nanocomposites (PNCs) employ low volume fraction filler-like concepts with randomly-oriented and poorly controlled morphologies due to difficult issues such as dispersion and alignment of the nanostructures. Here, novel fabrication techniques yield controlled-morphology aligned carbon nanotube (CNT) composites with measured non-isotropic properties and trends consistent with standard composites theories. Modulus and electrical conductivity are maximal along the CNT axis, and are the highest reported in the literature due to the continuous aligned-CNTs and use of an unmodified aerospace-grade structural epoxy. Rule-of-mixtures predictions are brought into agreement with the measured moduli when CNT waviness is incorporated. Waviness yields a large (10×) reduction in modulus, and therefore control of CNT collimation is seen as the primary limiting factor in CNT reinforcement of composites for stiffness. Anisotropic electron transport (conductivity and current-carrying capacity) follows expected trends, with enhanced conductivity and Joule heating observed at high current densities.  相似文献   

20.
We present for the first time an in-depth study of the RF response of a single-walled carbon nanotube (SWCNT) rope. Our novel electrode design, based on a tapered coplanar approach, allows for single tube measurements well into the GHz regime, minimizing substrate-related parasitics. From the analysis of the S-parameters, the ac transport mechanism in the range 30 kHz to 6 GHz is established. This work is an essential prerequisite for the fabrication of high-speed devices based on bundles of nanowires or low-dimensional structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号