首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of chemokines such as macrophage-inflammatory protein-1 alpha (MIP-1 alpha) from activated macrophages is a crucial step in cell recruitment necessary for establishing local inflammatory responses. To ascertain the importance of the L-arginine/nitric oxide (NO) pathway in LPS-induced MIP-1 alpha release, we stimulated human adherent PBMC with LPS in the presence of the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA). L-NMMA decreased LPS-induced MIP-1 alpha protein release (45.5% inhibition) and steady state levels of mRNA (48% inhibition) in adherent PBMC. The concentration of L-NMMA for inhibition of MIP-1 alpha release was dependent on the concentration of L-arginine in the cell culture medium, emphasizing the L-arginine-related action of the drug. Most of the MIP-1 alpha release was attributed to the activity of IL-1 and TNF, since coincubation of LPS-stimulated PBMC with IL-1R antagonist and TNF-binding protein abrogated LPS-induced MIP-1 alpha release (by 76.8%). Analysis of cytokine secretion revealed that, in addition to MIP-1 alpha, L-NMMA inhibited the release of mature IL-1 beta (by 70%) and TNF-alpha (by 53%). In contrast, release of macrophage chemoattractant protein-1 was unaffected; IL-10 was augmented (123.4%) by L-NMMA. In the presence of exogenous NO provided by NO donors, LPS-induced MIP-1 alpha release was enhanced. We concluded that endogenous NO acts as a mediator of inflammation. Since IL-10 is a potent anti-inflammatory cytokine, these data also suggest that L-NMMA acts as an anti-inflammatory agent by specifically altering the balance of pro- and anti-inflammatory cytokines released from LPS-stimulated human PBMC.  相似文献   

2.
The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxide synthase (iNOS) expression by beta cells. The IL-1R antagonist protein completely prevents TNF + LPS-induced nitrite production, iNOS expression and the inhibitory effects on glucose-stimulated insulin secretion by rat islets. Resident macrophages appear to be the source of IL-1, as a 7-day culture of rat islets at 24 degrees C (conditions known to deplete islets of lymphoid cells) prevents TNF + LPS-induced iNOS expression, nitrite production, and the inhibitory effects on insulin secretion. In addition, macrophage depletion also inhibits TNF + LPS-induced IL-1alpha and IL-1beta mRNA expression in rat islets. Immunocytochemical colocalization of IL-1beta with the macrophage-specific marker ED1 was used to provide direct support for resident macrophages as the islet cellular source of IL-1. IL-1beta appears to mediate the inhibitory actions of TNF + LPS on beta cell function as TNF + LPS-induced expression of IL-1beta is fourfold higher than IL-1alpha, and Ab neutralization of IL-1beta prevents TNF + LPS-induced nitrite production by rat islets. These findings support a mechanism by which the activation of resident islet macrophages and the intraislet release of IL-1 may mediate the initial dysfunction and destruction of beta cells during the development of autoimmune diabetes.  相似文献   

3.
Distributions of immunoreactive interleukin-1 (IL-1) and lipopolysaccharide (LPS) were studied in the tissues of rats after intravenous injection of purified LPS or live Escherichia coli bacteria. IL-1 staining in the spleen peaked at 4-8 h, colocalized with LPS in marginal zone macrophages, and was undetectable 24 h after injection, whereas LPS staining peaked at 24 h and was detectable for 4 weeks. The tissue IL-1 response was similar for LPS and live bacteria. Thus, tissue IL-1 is down-regulated within hours despite maintenance of LPS in the same cells for weeks. Macrophages in liver and lung had only slight IL-1 staining despite intense staining for LPS. Tissue IL-1 production appears to be differentially regulated after gram-negative bacteremia; LPS cleared by liver and lung macrophages elicit minimal IL-1, whereas there is high local IL-1 production in the marginal zone of the spleen that may increase immune responses to bacterial wall antigens.  相似文献   

4.
We studied the potential role of a cytokine regulatory mechanism(s) in LPS-dependent reprogramming and modulation of TNF-alpha and nitric oxide (NO) responses in mouse peritoneal macrophages. Reciprocal regulation of TNF-alpha and NO production by LPS-primed and LPS-stimulated macrophages was found to be dependent on the presence of soluble secretory products released by the cells during the initial LPS priming interaction. Pretreatment of naive macrophages with different mouse recombinant cytokines such as rIL-10, rIL-12, and rIFN-gamma dose dependently and differentially regulated subsequent LPS-induced production of TNF-alpha, IL-6, and NO by cytokine-primed cells. Analysis of IL-12 and IL-10 levels present in culture supernatants of LPS-primed and LPS-stimulated macrophages revealed a high degree of correlation between the profiles of TNF-alpha and IL-12 as well as NO and IL-10. Furthermore, LPS priming of macrophages in the presence of anti-IL-12-neutralizing mAb attenuated TNF-alpha responses while at the same time up-regulated NO production. In contrast, neutralization of endogenous IL-10 with anti-IL-10 mAb resulted in considerable TNF-alpha response at LPS priming doses under conditions that would otherwise strongly inhibit TNF-alpha production. We also found that the initial LPS priming of naive macrophages differentially and dose dependently regulates expression of mRNAs for IL-10, IL-12, and IFN-gamma in LPS-primed macrophages. Collectively, our data provide experimental support for the hypothesis that a cytokine regulatory network, most probably autocrine, tightly controls the reciprocal modulation of TNF-alpha and NO responses in LPS-primed macrophages.  相似文献   

5.
6.
Monocytes/macrophages play a central role in mediating the effects of lipopolysaccharide (LPS) derived from gram-negative bacteria by the production of proinflammatory mediators. Recently, it was shown that the expression of cytokine genes for tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interferon-inducible protein-10 (IP-10) by murine macrophages in response to low concentrations of LPS is entirely CD14 dependent. In this report, we show that murine macrophages respond to low concentrations of LPS (相似文献   

7.
BACKGROUND: Monocytic tissue factor (TF), initiating the extrinsic blood coagulation pathway, is often upregulated under septic or inflammatory conditions. The complex activating mechanism remains largely unclear and no effective strategy has been firmly established. In this study, we used a model monocytic cell line (human leukemic THP-1 promonocytes) to address (1) the nature of TF activation in response to bacterial endotoxin and (2) the application of anti-inflammatory cytokines in relieving monocytic hypercoagulation. RESULTS: TF in THP-1 cells was substantially activated by exposure to bacterial endotoxin (LPS; 5 micrograms/ml) for 6 h. Human recombinant IL-4 (500 ng/ml) and IL-10 (500 ng/ml) inhibited TF activation induced by LPS. To determine if these cytokines depressed LPS recognition resulting in such inhibition, we employed an anti-CD14 mAb (UCHM-1; Sigma Chemical) to address the role of CD14 in LPS transmembrane signaling. LPS-induced TF activation was depressed by 35% upon inclusion of the anti-CD14 mAb (1:10 dilution). This antibody alone mimicked TF activation which accounted for 35% of the LPS-induced TF activation, suggesting the activating role of CD14 ligation. In addition, the anti-CD14 mAb elicited the production of nitric oxide (NO) which was found to be independent of TF activation. NO production could serve as an independent index for monitoring LPS recognition. IL-4 depressed the anti-CD14 mAb-induced TF activation as well as NO elicitation, indicating the blockade of CD14 ligation. In contrast, IL-10 showed differential inhibitory activities. TF activation induced by either LPS or anti-CD14 mAb was inhibited by IL-10 which did not show any inhibition on NO elicitation under these conditions. In a separate approach, neither IL-4 nor IL-10 inhibited phorbol ester-induced NO elicitation. More direct evidence came from an epifluorescent demonstration showing that IL-4 blocked binding of FITC-conjugated LPS and anti-CD14 mAb to THP-1 cells. CONCLUSIONS: Taken together, the results suggest that LPS action in relation to TF activation consists of CD14-independent and -dependent signaling including CD14 ligation. We also showed that anti-inflammatory cytokines (IL-4 and -10) significantly depressed TF activation. IL-4 antagonized CD14-dependent LPS recognition leading to the depression in TF activation.  相似文献   

8.
The correlation between the activation of macrophages by lipopolysaccharides (LPS) from four different bacterial species and their antitumor effect in a rat model of colon cancer was investigated. The efficacy of LPS from Neisseria meningitidis (Nm), Salmonella minnesota (Sm), Escherichia coli (Ec) and Bordetella pertussis (Bp) was evaluated as the smallest concentration inducing rat peritoneal macrophages (pm psi) to produce tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-6 and nitric oxide (NO). The cytokine production was measured in bioassays and NO production quantitatively with Griess reactant. Nm was the most effective LPS with concentrations of 1 ng/10(6) pm psi for the induction of TNF, IL-1 and IL-6 activities and 0.01 ng/10(6) pm psi for the induction of NO production. The range between efficacy of different LPS was broad from 1 to 10(4)-10(5) for TNF activity, 1 to 10(2)-10(3) for NO production and IL-6 activity and 1 to 10-10(2) for IL-1 activity. In vivo antitumor effect was evaluated on the growth of peritoneal carcinomatosis. Complete tumor regressions were observed, the LPS rating with respect to decreasing efficacy was Nm, Sm, Ec then Bp; Nm, Sm and Ec were very closed while Bp was not effective. These results show the correlation between the antitumor effect in vivo of LPS and their capacity to induce in vitro IL-1 activity, but not between their ability to induce NO production, TNF and IL-6 activities.  相似文献   

9.
10.
IL-10 is an anti-inflammatory cytokine with potent immunomodulatory effects, including inhibition of cytokine production. However, regulation of monocyte IL-10 production is poorly understood. In this report we have investigated the mechanisms of LPS-induced IL-10 production by human peripheral blood monocytes and demonstrate that IL-10 synthesis is uniquely dependent on the endogenous proinflammatory cytokines IL-1 and/or TNF-alpha. LPS signal transduction in monocytes has been shown to involve activation of the p38 and p42 mitogen-activated protein kinase (MAPK) cascades. The results in this paper indicate that inhibition of p38 MAPK potently inhibited the production of IL-10, IL-1beta, and TNF-alpha, whereas blockade of the p42/44 MAPK pathway, while partially inhibiting TNF-alpha and IL-1beta production, had no effect on monocyte secretion of IL-10. Furthermore, neither the inhibition of monocyte TNF-alpha induced by IL-10 nor the stimulation of soluble TNF receptor production was affected by inhibition of the p42/44 MAPK pathway, suggesting that this signaling event is not involved in either monocyte production of or anti-inflammatory responses to IL-10. These data raise the interesting possibility that proinflammatory TNF-alpha-mediated effects may be selectively blocked without modulating the induction or the response to IL-10, whereas the signaling events associated with the anti-inflammatory events induced by IL-10 remain to be elucidated.  相似文献   

11.
12.
The cardiovascular dysfunctions associated with septic shock induced by gram-negative or gram-positive bacteria (gram-positive or gram-negative septic shock) are comparable. In gram-negative septic shock, lipopolysaccharide (LPS) induces nitric oxide (NO) synthase, which contributes to the vascular hypotension and hyporeactivity to vasoconstrictors. The role of NO in gram-positive septic shock and the nature of the bacterial wall components responsible for the vascular effects of gram-positive bacteria are not well known. This study investigated the vascular effects of cell wall serotype polyosides, rhamnose glucose polymers (RGPs), from Streptococcus mutans, in comparison with lipoteichoic acid (LTA) from Staphylococcus aureus, on the induction of NO synthase activity in the rat aorta. We show that 10 microg of both RGPs and LTA per ml induced hyporeactivity to noradrenaline, L-arginine-induced relaxation, increases of 2.2- and 7.8-fold, respectively, of cyclic GMP production, and increases of 7- and 12-fold in nitrite release. All of these effects appeared after several hours of incubation and were inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase. Electron paramagnetic resonance spin trapping experiments demonstrated directly that RGPs and LTA induced NO overproduction (four- to eightfold, respectively) in rat aortic rings; this production was inhibited by L-NAME and prevented by dexamethasone. These results demonstrate directly the induction of NO production in vascular tissue by LTA and show that another, chemically different component of gram-positive bacteria can also have these properties. This result suggests that different components of the gram-positive bacterial wall could be implicated in the genesis of cardiovascular dysfunctions observed in gram-positive septic shock.  相似文献   

13.
14.
We studied the in vivo effect of interferon-gamma (IFN-gamma) on nitric oxide (NO) generation. ESR spectra of nitric oxide hemoglobin (HbNO) appeared after a lag time of 2h in the blood of rats treated with Escherichia coli lipopolysaccharide (LPS). IFN-gamma enhanced LPS-induced HbNO formation in rats without modifying the time lag, although IFN-gamma alone did not induce HbNO formation. The plasma nitrate concentration was approximately one order of magnitude higher than the HbNO concentration. On treatment with LPS alone, the amount of tumor necrosis factor (TNF) released decreased after 2 h. Simultaneous addition of IFN-gamma and LPS increased TNF release for at least 8 h. Interleukin 1 (IL-1) release was detected only at 2 h in both groups. We also investigated the in vivo interactions of these cytokines. TNF plus IL-1 induced the greatest HbNO generation, followed by TNF plus IFN-gamma, and then IL-1 plus IFN-gamma. These results suggest that increase of TNF release by IFN-gamma plays a key role in NO generation in LPS-treated rats.  相似文献   

15.
This study compares the effects of interleukin (IL)-13, a cytokine with anti-inflammatory properties, with those of IL-4 or IL-10 on the expression of inducible nitric oxide synthase (iNOS) protein and activity in 1) a murine macrophage cell line (J774.2) activated with lipopolysaccharide (LPS) and 2) rat aortic smooth muscle cells (RASM) activated with LPS plus interferon-gamma. Pretreatment of macrophages with IL-4 or IL-13 caused a similar, concentration-dependent inhibition of the formation of nitrite and the expression of iNOS protein elicited by LPS. In contrast, IL-13 was a much more potent inhibitor of the formation of nitrite and the expression of iNOS protein in activated RASM than IL-4. IL-10 caused only a small, but significant, inhibition of the nitrite formation induced by LPS in macrophages and RASM. Pretreatment of J774.2 macrophages, but not of RASM, with the phosphatidylinositol-3-kinase inhibitor, wortmannin (10-100 nM), attenuated the inhibition by either IL-13 or IL-4 of the LPS-induced increase in nitrite in a dose-related fashion. Thus, IL-13 is more potent than IL-4 in preventing the expression of iNOS protein and activity in activated RASM, whereas IL-13 and IL-4 are equipotent in inhibiting the expression of iNOS protein and activity in J774.2 macrophages.  相似文献   

16.
It was recently demonstrated that the diffusible messenger molecule nitric oxide (NO) is involved in the febrile response of rats and rabbits to exogenous or endogenous pyrogens. In this study we have investigated the effects of systemic administration of the NO-synthase inhibitor N-nitro-l-arginine-methylester (l-NAME) on abdominal temperature and on lipopolysaccharide- (LPS-) induced fever in guinea-pigs. We further studied the effects of l-NAME on the LPS-induced circulating cytokine network by measurement of tumor necrosis factor alpha (TNF) and interleukin-6 (IL-6) in blood plasma during the time course of fever. At a dose of 10 mg/kg, intra-arterial injection of l-NAME per se had no influence on the abdominal temperature of guinea-pigs, while administration of 50 mg/kg l-NAME evoked a pronounced fall of body temperature which lasted about 12 h. When injected simultaneously with 10 microgram/kg LPS into the arterial circulation, the lower dose of l-NAME that did not decrease abdominal temperature per se caused a significant attenuation of LPS-induced fever due to suppression of the second phase of the biphasic febrile response. The LPS-induced cytokine network remained unimpaired by the treatment with l-NAME. Peak activity of TNF in plasma (measured 60 min after LPS injection) was 20,596+/-2368 pg/ml in control animals and 18,900+/-4778 pg/ml in guinea-pigs treated with l-NAME. In addition, circulating levels of IL-6 were not statistically different between both groups of animals 60 min or 180 min after administration of LPS along with l-NAME or vehicle. The results confirm that endogenous NO formation has a role in the generation of LPS-induced fever and demonstrate that the attenuation of fever by inhibition of NO-synthase is independent of the circulating LPS-induced cytokine network.  相似文献   

17.
The antitumor agent paclitaxel (Taxol) mimics the actions of lipopolysaccharide (LPS) on murine macrophages (M phi). Recently, we have shown that the benzoyl group at the C-3' position of paclitaxel is the most important site to induce nitric oxide (NO) and tumor necrosis factor (TNF) production by C3H/HeN M phi (Biochem. Biophys. Res. Commun. 210, 678-686, 1996). In the present study, synthetic analogs of paclitaxel with replacement of the C-3'-N position were examined for their potencies to induce NO and TNF production by peritoneal M phi of LPS-responsive C3H/HeN mice and LPS-hyporesponsive C3H/HeJ mice, by human blood cells and human M phi. In this structure-activity relationship study, we found that (i) the p-substitution of the benzoyl group definitely affects the activity to activate C3H/HeN M phi, (ii) the analogs having a methyl or chloro group at the p-position exhibit stronger activity than that of paclitaxel, (iii) there is good correlation between NO and TNF production by the M phi in response to compounds, (iv) the compounds tested do not induce either NO or TNF production by C3H/HeJ M phi or TNF production by human cells, (v) a previous treatment of C3H/HeN M phi with the inactive compounds can hardly affect either paclitaxel- or LPS-induced TNF production by the M phi, (vi) paclitaxel and its analogs marginally affect LPS-induced TNF production by human blood cells, and (vii) there is no correlation between the NO/TNF inducibility to C3H/HeN M phi and growth inhibitory activity against M phi-like J774.1 and J7.DEF3 cells.  相似文献   

18.
BACKGROUND: Bacterial peritonitis is a frequent complication during treatment of end-stage renal failure by continuous ambulatory peritoneal dialysis. Local host defence mechanisms including the secretion of proinflammatory cytokines by peritoneal macrophages are of particular importance in the pathogenesis of infectious complications. LPS-binding protein (LBP) and soluble CD14 (sCD14) are serum factors known to regulate the endotoxin-induced cellular immune response. However, it is still unknown whether LBP and sCD14 are also present in the peritoneal effluent of CAPD patients. METHODS: Using specific immunoassays, we examined the concentration of LBP, sCD14 and the proinflammatory cytokines TNF-alpha, IL-1beta and IL-6 in the dialysis effluents of 31 patients with CAPD-associated peritonitis. Twenty patients without peritonitis served as controls. Intraperitoneal LPS concentrations were determined using the limulus amebocyte lysate assay. RESULTS: Bacterial lipopolysaccharide could be detected in 42% of the infected dialysis effluents. In comparison to controls (0.2 +/- 0.05 microg/ml), LBP was significantly elevated in both gram-negative/LPS-positive (1.03 +/- 0.3 microg/ml) and gram-positive infections (0.5 +/- 0.14 microg/ml) (P<0.05). No significant differences were detected concerning the intraperitoneal sCD14 levels in the three patient groups. Levels of TNF-alpha, IL-1beta and IL-6 were significantly increased in the effluents of patients with bacterial peritonitis compared to noninfected controls. Moreover the respective cytokine concentrations were significantly higher in the gram-negative/LPS-positive compared to the gram-positive bacterial infections (P<0.01). CONCLUSION: Our data demonstrate that LBP is significantly elevated in the dialysis effluents of patients with CAPD-associated peritonitis caused by both gram-negative and gram-positive bacteria and might be used as a marker of intraperitoneal infection. Moreover, our findings support the concept that LBP enhances the effects of LPS on cytokine production by peritoneal macrophages. The function of LBP in gram-positive infection remains to be further elucidated.  相似文献   

19.
The antitumor agent, Taxol, shares with bacterial LPS the ability to activate murine macrophages, and its LPS-mimetic effects are blocked by LPS analogue antagonists. Since CD14 is central to the recognition of LPS by macrophages, we sought to examine a role for CD14 in the response to Taxol vs LPS. A comparison of responses of macrophages from wild-type mice with those from mice lacking CD14 due to a targeted disruption of the CD14 gene (CD14-deficient knockout (CD14KO)) revealed that like LPS, Taxol induces both CD14-dependent and -independent pathways of gene activation, although the CD14 dependency of Taxol stimulation is much less striking than that observed with LPS. The macrophage interaction with low concentrations of LPS (< or = 10 ng/ml) is largely CD14 dependent, as evidenced by the lack of induction of TNF-alpha, IL-1beta, and interferon-inducible protein-10 (IP-10) genes by CD14KO macrophages cultured in the absence of soluble CD14 (i.e., in autologous CD14KO -/- mouse serum). However, at high concentrations of LPS or Taxol, a CD14-independent pathway of activation is observed: this pathway leads to minimal IP-10 gene induction, even though induction of TNF-alpha and IL-1beta occurs. Measurements of TNF secretion followed a similar pattern to that observed at the level of steady state mRNA. These data suggest the existence of two pathways of activation by both LPS and Taxol: one that is CD14 dependent and leads to induction of TNF-alpha, IL-1beta, and IP-10 gene induction, and a CD14-independent pathway that results in the induction of TNF-alpha and IL-1beta, with minimal induction of IP-10.  相似文献   

20.
Interleukin-10 (IL-10) is a potent inhibitor of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production and has been shown to protect mice from endotoxin shock. As IFN-gamma is another important mediator of LPS toxicity, we studied the effects of IL-10 on LPS-induced IFN-gamma synthesis in vitro and in vivo. First, we found that the addition of recombinant human IL-10 (rhIL-10) (10 U/ml) to human whole blood markedly suppressed LPS-induced IFN-gamma release while neutralization of endogenously synthesized IL-10 resulted in increased IFN-gamma levels. The ability of rIL-10 to inhibit LPS-induced IFN-gamma synthesis was also observed in vivo in mice. Indeed, administration of 1000 U recombinant mouse IL-10 (rmIL-10) 30 min before and 3 h after challenge of BALB/c mice with 100 micrograms LPS resulted in a threefold decrease in peak IFN-gamma serum levels. We then examined the production and the role of IL-10 during murine endotoxemia. We found that LPS injection causes the rapid release of IL-10, peak IL-10 serum levels being observed 90 min after LPS challenge. Neutralization of endogenously produced IL-10 by administration of 2 mg JES5-2A5 anti-IL-10 monoclonal antibody (mAb) 2 h before LPS challenge resulted in a marked increase in both TNF and IFN-gamma serum levels while irrelevant isotype-matched mAb had no effect. The enhanced production of inflammatory cytokines in anti-IL-10 mAb-treated mice was associated with a 60% lethality after injection of 500 micrograms LPS, while all mice pretreated with control mAb survived. We conclude that the rapid release of IL-10 during endotoxemia is a natural antiinflammatory response controlling cytokine production and LPS toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号