首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is important to find the natural clusters in high dimensional data where visualization becomes difficult. A natural cluster is a cluster of any shape and density, and it should not be restricted to a globular shape as a wide number of algorithms assume, or to a specific user-defined density as some density-based algorithms require.In this work, it is proposed to solve the problem by maximizing the relatedness of distances between patterns in the same cluster. It is then possible to distinguish clusters based on their distance-based densities. A novel dynamic model is proposed based on new distance-relatedness measures and clustering criteria. The proposed algorithm “Mitosis” is able to discover clusters of arbitrary shapes and arbitrary densities in high dimensional data. It has a good computational complexity compared to related algorithms. It performs very well on high dimensional data, discovering clusters that cannot be found by known algorithms. It also identifies outliers in the data as a by-product of the cluster formation process. A validity measure that depends on the main clustering criterion is also proposed to tune the algorithm's parameters. The theoretical bases of the algorithm and its steps are presented. Its performance is illustrated by comparing it with related algorithms on several data sets.  相似文献   

2.
Clustering is an important field for making data meaningful at various applications such as processing satellite images, extracting information from financial data or even processing data in social sciences. This paper presents a new clustering approach called Gaussian Density Distance (GDD) clustering algorithm based on distance and density properties of sample space. The novel part of the method is to find best possible clusters without any prior information and parameters. Another novel part of the algorithm is that it forms clusters very close to human clustering perception when executed on two dimensional data. GDD has some similarities with today’s most popular clustering algorithms; however, it uses both Gaussian kernel and distances to form clusters according to data density and shape. Since GDD does not require any special parameters prior to run, resulting clusters do not change at different runs. During the study, an experimental framework is designed for analysis of the proposed clustering algorithm and its evaluation, based on clustering performance for some characteristic data sets. The algorithm is extensively tested using several synthetic data sets and some of the selected results are presented in the paper. Comparative study outcomes produced by other well-known clustering algorithms are also discussed in the paper.  相似文献   

3.
张梅  陈梅  李明 《计算机工程与科学》2021,43(12):2243-2252
针对聚类算法在检测任意簇时精确度不高、迭代次数多及效果不佳等缺点,提出了基于局部中心度量的边界点划分密度聚类算法——DBLCM.在局部中心度量的限制下,数据点被划分到核心区域或边界区域.核心区域的点按照互近邻优先成簇的分配方式形成初始簇,边界区域的点参考互近邻中距离最近点所在簇进行分配,从而得到最终簇.为验证算法的有效性,将DBLCM与3个经典算法和3个近几年新提出的优秀算法,在包含任意形状、任意密度的二维数据集和任意维度的多维数据集上进行测试.另外,为了验证DBLCM算法中参数k的敏感性,在所用的数据集上做了k值与簇质量的相关性测试.实验结果表明,DBLCM算法具有识别精度高,检测任意簇效果好和无需迭代等优点,综合性能优于6个对比算法.  相似文献   

4.
粗糙K-means算法中下近似和边界区域权重系数的设置对算法的聚类效果有着重要的影响。传统的粗糙K-means算法及很多改进的粗糙K-means算法对所有类簇的下近似和边界区域设置固定的权重,忽视了簇内数据对象分布差异性的影响。针对这个问题,根据下近似和边界区域的数据对象相对于类簇中心的空间分布情况,提出一种新的基于空间距离自适应权重度量的粗糙K-means算法。该算法在每次迭代过程中,根据每个类簇的下近似和边界区域的数据对象相对于类簇中心的平均距离,综合度量下近似和边界区域对于类簇中心迭代计算的不同重要程度,动态地计算下近似和边界区域的相对权重系数。通过实例验证及实验仿真证明了所提算法的有效性。  相似文献   

5.
This paper focuses on the development of an effective cluster validity measure with outlier detection and cluster merging algorithms for support vector clustering (SVC). Since SVC is a kernel-based clustering approach, the parameter of kernel functions and the soft-margin constants in Lagrangian functions play a crucial role in the clustering results. The major contribution of this paper is that our proposed validity measure and algorithms are capable of identifying ideal parameters for SVC to reveal a suitable cluster configuration for a given data set. A validity measure, which is based on a ratio of cluster compactness to separation with outlier detection and a cluster-merging mechanism, has been developed to automatically determine ideal parameters for the kernel functions and soft-margin constants as well. With these parameters, the SVC algorithm is capable of identifying the optimal number of clusters with compact and smooth arbitrary-shaped cluster contours for the given data set and increasing robustness to outliers and noise. Several simulations, including artificial and benchmark data sets, have been conducted to demonstrate the effectiveness of the proposed cluster validity measure for the SVC algorithm.  相似文献   

6.
The self-organizing map (SOM) has been widely used in many industrial applications. Classical clustering methods based on the SOM often fail to deliver satisfactory results, specially when clusters have arbitrary shapes. In this paper, through some preprocessing techniques for filtering out noises and outliers, we propose a new two-level SOM-based clustering algorithm using a clustering validity index based on inter-cluster and intra-cluster density. Experimental results on synthetic and real data sets demonstrate that the proposed clustering algorithm is able to cluster data better than the classical clustering algorithms based on the SOM, and find an optimal number of clusters.  相似文献   

7.
通过引入上、下近似的思想,粗糙K-means已成为一种处理聚类边界模糊问题的有效算法,粗糙模糊K-means、模糊粗糙K-means等作为粗糙K-means的衍生算法,进一步对聚类边界对象的不确定性进行了细化描述,改善了聚类的效果。然而,这些算法在中心均值迭代计算时没有充分考虑各簇的数据对象与均值中心的距离、邻近范围的数据分布疏密程度等因素对聚类精度的影响。针对这一问题提出了一种局部密度自适应度量的方法来描述簇内数据对象的空间特征,给出了一种基于局部密度自适应度量的粗糙K-means聚类算法,并通过实例计算分析验证了算法的有效性。  相似文献   

8.
Cluster validity indexes are very important tools designed for two purposes: comparing the performance of clustering algorithms and determining the number of clusters that best fits the data. These indexes are in general constructed by combining a measure of compactness and a measure of separation. A classical measure of compactness is the variance. As for separation, the distance between cluster centers is used. However, such a distance does not always reflect the quality of the partition between clusters and sometimes gives misleading results. In this paper, we propose a new cluster validity index for which Jeffrey divergence is used to measure separation between clusters. Experimental results are conducted using different types of data and comparison with widely used cluster validity indexes demonstrates the outperformance of the proposed index.  相似文献   

9.
Traditionally, prototype-based fuzzy clustering algorithms such as the Fuzzy C Means (FCM) algorithm have been used to find “compact” or “filled” clusters. Recently, there have been attempts to generalize such algorithms to the case of hollow or “shell-like” clusters, i.e., clusters that lie in subspaces of feature space. The shell clustering approach provides a powerful means to solve the hitherto unsolved problem of simultaneously fitting multiple curves/surfaces to unsegmented, scattered and sparse data. In this paper, we present several fuzzy and possibilistic algorithms to detect linear and quadric shell clusters. We also introduce generalizations of these algorithms in which the prototypes represent sets of higher-order polynomial functions. The suggested algorithms provide a good trade-off between computational complexity and performance, since the objective function used in these algorithms is the sum of squared distances, and the clustering is sensitive to noise and outliers. We show that by using a possibilistic approach to clustering, one can make the proposed algorithms robust  相似文献   

10.
粗糙K-Means及其衍生算法在处理边界区域不确定信息时,其边界区域中的数据对象因与各类簇中心点的距离相差较小,导致难以依据距离、密度对数据点进行区分判断。提出一种新的粗糙K-Means算法,在对数据进行划分时,综合数据对象的局部密度与邻域归属信息来衡量数据点与类簇的相似性,边界数据与类簇之间的关系由其局部的空间分布所决定,使得模糊不确定信息之间的差异更明显。在人工数据集和UCI标准数据集上的实验结果表明,该算法对边界区域数据的划分具有更高的准确率。  相似文献   

11.
马福民  孙静勇  张腾飞 《控制与决策》2022,37(11):2968-2976
在原有数据聚类结果的基础上,如何对新增数据进行归属度量分析是提高增量式聚类质量的关键,现有增量式聚类算法更多地是考虑新增数据的位置分布,忽略其邻域数据点的归属信息.在粗糙K-means聚类算法的基础上,针对边界区域新增数据点的不确定性信息处理,提出一种基于邻域归属信息的粗糙K-means增量式聚类算法.该算法综合考虑边界区域新增数据样本的位置分布及其邻域数据点的类簇归属信息,使得新增数据点与各类簇的归属度量更为合理;此外,在增量式聚类过程中,根据新增数据点所导致的类簇结构的变化,对类簇进行相应的合并或分裂操作,使类簇划分可以自适应调整.在人工数据集和UCI标准数据集上的对比实验结果验证了算法的有效性.  相似文献   

12.
Classical clustering methods, such as partitioning and hierarchical clustering algorithms, often fail to deliver satisfactory results, given clusters of arbitrary shapes. Motivated by a clustering validity index based on inter-cluster and intra-cluster density, we propose that the clustering validity index be used not only globally to find optimal partitions of input data, but also locally to determine which two neighboring clusters are to be merged in a hierarchical clustering of Self-Organizing Map (SOM). A new two-level SOM-based clustering algorithm using the clustering validity index is also proposed. Experimental results on synthetic and real data sets demonstrate that the proposed clustering algorithm is able to cluster data in a better way than classical clustering algorithms on an SOM.  相似文献   

13.
Cluster validity indices are used for estimating the quality of partitions produced by clustering algorithms and for determining the number of clusters in data. Cluster validation is difficult task, because for the same data set more partitions exists regarding the level of details that fit natural groupings of a given data set. Even though several cluster validity indices exist, they are inefficient when clusters widely differ in density or size. We propose a clustering validity index that addresses these issues. It is based on compactness and overlap measures. The overlap measure, which indicates the degree of overlap between fuzzy clusters, is obtained by calculating the overlap rate of all data objects that belong strongly enough to two or more clusters. The compactness measure, which indicates the degree of similarity of data objects in a cluster, is calculated from membership values of data objects that are strongly enough associated to one cluster. We propose ratio and summation type of index using the same compactness and overlap measures. The maximal value of index denotes the optimal fuzzy partition that is expected to have a high compactness and a low degree of overlap among clusters. Testing many well-known previously formulated and proposed indices on well-known data sets showed the superior reliability and effectiveness of the proposed index in comparison to other indices especially when evaluating partitions with clusters that widely differ in size or density.  相似文献   

14.
在不确定性数据聚类算法的研究中,普遍需要假设不确定性数据服从某种分布,继而获得表示不确定性数据的概率密度函数或概率分布函数,然而这种假设很难保证与实际应用系统中的不确定性数据分布一致。现有的基于密度的算法对初始参数敏感,在对密度不均匀的不确定性数据聚类时,无法发现任意密度的类簇。鉴于这些不足,提出基于区间数的不确定性数据对象排序识别聚类结构算法(UD-OPTICS)。该算法利用区间数理论,结合不确定性数据的相关统计信息来更加合理地表示不确定性数据,提出了低计算复杂度的区间核心距离与区间可达距离的概念与计算方法,将其用于度量不确定性数据间的相似度,拓展类簇与对象排序识别聚类结构。该算法可很好地发现任意密度的类簇。实验结果表明,UD-OPTICS算法具有较高的聚类精度和较低的复杂度。  相似文献   

15.
We present a modified find density peaks (MFDP) clustering algorithm. In the MFDP, a critical parameter, dc, is auto-defined by minimizing the entropy of all points. By considering both the point density, ρ, and large distance from points with higher densities, δ, the high-dimensional points are transformed into a 2D space. The halo points of the original FDP cluster algorithm are redefined, and a definition of boundary points is introduced to illustrate the intersection region between clusters. To demonstrate the clustering ability, the distance-based K-means clustering and density-based algorithms DBSCAN, original FDP are employed respectively. Four criteria are introduced to evaluate the clustering algorithms quantitatively. For most of the cases, the MFDP provides a superior clustering result than both of the typical clustering algorithms, and FDP in 20 commonly used benchmark datasets, particularly in clearly depicting the intersection region between clusters. Finally, we evaluate the performance of the MFDP in the cluster analysis of conformations in molecular dynamics (MD). In the MD clustering process, eight typical cluster center conformations are selected in six collective variable spaces. Moreover, it is in strong agreement with the experiment results. The clustering results demonstrate the potential for generalized applications of the modified algorithm to similar problems.  相似文献   

16.
In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. The technique is based on fuzzy clustering approach and takes care of spatial correlation between neighboring pixels of the difference image produced by comparing two images acquired on the same geographical area at different times. Since the ranges of pixel values of the difference image belonging to the two clusters (changed and unchanged) generally have overlap, fuzzy clustering techniques seem to be an appropriate and realistic choice to identify them (as we already know from pattern recognition literatures that fuzzy set can handle this type of situation very well). Two fuzzy clustering algorithms, namely fuzzy c-means (FCM) and Gustafson-Kessel clustering (GKC) algorithms have been used for this task in the proposed work. For clustering purpose various image features are extracted using the neighborhood information of pixels. Hybridization of FCM and GKC with two other optimization techniques, genetic algorithm (GA) and simulated annealing (SA), is made to further enhance the performance. To show the effectiveness of the proposed technique, experiments are conducted on two multispectral and multitemporal remote sensing images. A fuzzy cluster validity index (Xie-Beni) is used to quantitatively evaluate the performance. Results are compared with those of existing Markov random field (MRF) and neural network based algorithms and found to be superior. The proposed technique is less time consuming and unlike MRF does not require any a priori knowledge of distributions of changed and unchanged pixels.  相似文献   

17.
Density-based semi-supervised clustering   总被引:2,自引:0,他引:2  
Semi-supervised clustering methods guide the data partitioning and grouping process by exploiting background knowledge, among else in the form of constraints. In this study, we propose a semi-supervised density-based clustering method. Density-based algorithms are traditionally used in applications, where the anticipated groups are expected to assume non-spherical shapes and/or differ in cardinality or density. Many such applications, among else those on GIS, lend themselves to constraint-based clustering, because there is a priori knowledge on the group membership of some records. In fact, constraints might be the only way to prevent the formation of clusters that do not conform to the applications’ semantics. For example, geographical objects, e.g. houses, separated by a borderline or a river may not be assigned to the same cluster, independently of their physical proximity. We first provide an overview of constraint-based clustering for different families of clustering algorithms. Then, we concentrate on the density-based algorithms’ family and select the algorithm DBSCAN, which we enhance with Must-Link and Cannot-Link constraints. Our enhancement is seamless: we allow DBSCAN to build temporary clusters, which we then split or merge according to the constraints. Our experiments on synthetic and real datasets show that our approach improves the performance of the algorithm.  相似文献   

18.
Traditional clustering methods assume that there is no measurement error, or uncertainty, associated with data. Often, however, real world applications require treatment of data that have such errors. In the presence of measurement errors, well-known clustering methods like k-means and hierarchical clustering may not produce satisfactory results.In this article, we develop a statistical model and algorithms for clustering data in the presence of errors. We assume that the errors associated with data follow a multivariate Gaussian distribution and are independent between data points. The model uses the maximum likelihood principle and provides us with a new metric for clustering. This metric is used to develop two algorithms for error-based clustering, hError and kError, that are generalizations of Ward's hierarchical and k-means clustering algorithms, respectively.We discuss types of clustering problems where error information associated with the data to be clustered is readily available and where error-based clustering is likely to be superior to clustering methods that ignore error. We focus on clustering derived data (typically parameter estimates) obtained by fitting statistical models to the observed data. We show that, for Gaussian distributed observed data, the optimal error-based clusters of derived data are the same as the maximum likelihood clusters of the observed data. We also report briefly on two applications with real-world data and a series of simulation studies using four statistical models: (1) sample averaging, (2) multiple linear regression, (3) ARIMA models for time-series, and (4) Markov chains, where error-based clustering performed significantly better than traditional clustering methods.  相似文献   

19.
Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields on complex boundary surfaces from computational flow dynamics (CFD) still remains a challenging task. In part, this is due to the large, unstructured, adaptive resolution characteristics of the meshes used in the modeling and simulation process. Out of the wide variety of existing flow field visualization techniques, vector field clustering algorithms offer the advantage of capturing a detailed picture of important areas of the domain while presenting a simplified view of areas of less importance. This paper presents a novel, robust, automatic vector field clustering algorithm that produces intuitive and insightful images of vector fields on large, unstructured, adaptive resolution boundary meshes from CFD. Our bottom-up, hierarchical approach is the first to combine the properties of the underlying vector field and mesh into a unified error-driven representation. The motivation behind the approach is the fact that CFD engineers may increase the resolution of model meshes according to importance. The algorithm has several advantages. Clusters are generated automatically, no surface parameterization is required, and large meshes are processed efficiently. The most suggestive and important information contained in the meshes and vector fields is preserved while less important areas are simplified in the visualization. Users can interactively control the level of detail by adjusting a range of clustering distance measure parameters. We describe two data structures to accelerate the clustering process. We also introduce novel visualizations of clusters inspired by statistical methods. We apply our method to a series of synthetic and complex, real-world CFD meshes to demonstrate the clustering algorithm results.  相似文献   

20.
Traditional clustering methods assume that there is no measurement error, or uncertainty, associated with data. Often, however, real world applications require treatment of data that have such errors. In the presence of measurement errors, well-known clustering methods like k-means and hierarchical clustering may not produce satisfactory results.In this article, we develop a statistical model and algorithms for clustering data in the presence of errors. We assume that the errors associated with data follow a multivariate Gaussian distribution and are independent between data points. The model uses the maximum likelihood principle and provides us with a new metric for clustering. This metric is used to develop two algorithms for error-based clustering, hError and kError, that are generalizations of Ward's hierarchical and k-means clustering algorithms, respectively.We discuss types of clustering problems where error information associated with the data to be clustered is readily available and where error-based clustering is likely to be superior to clustering methods that ignore error. We focus on clustering derived data (typically parameter estimates) obtained by fitting statistical models to the observed data. We show that, for Gaussian distributed observed data, the optimal error-based clusters of derived data are the same as the maximum likelihood clusters of the observed data. We also report briefly on two applications with real-world data and a series of simulation studies using four statistical models: (1) sample averaging, (2) multiple linear regression, (3) ARIMA models for time-series, and (4) Markov chains, where error-based clustering performed significantly better than traditional clustering methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号