首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents modeling and control of nonlinear hybrid systems using multiple linearized models. Each linearized model is a local representation of all locations of the hybrid system. These models are then combined using Bayes theorem to describe the nonlinear hybrid system. The multiple models, which consist of continuous as well as discrete variables, are used for synthesis of a model predictive control (MPC) law. The discrete-time equivalent of the model predicts the hybrid system behavior over the prediction horizon. The MPC formulation takes on a similar form as that used for control of a continuous variable system. Although implementation of the control law requires solution of an online mixed integer nonlinear program, the optimization problem has a fixed structure with certain computational advantages. We demonstrate performance and computational efficiency of the modeling and control scheme using simulations on a benchmark three-spherical tank system and a hydraulic process plant.  相似文献   

2.
3.
基于遗传算法的非线性模型预测控制方法   总被引:14,自引:0,他引:14       下载免费PDF全文
杨建军  刘民  吴澄 《控制与决策》2003,18(2):141-144
介绍了非线性模型预调控制算法结构,提出了基于遗传算法的非线性模型预测控制方法,将遗传算法作为优化技术用于受限非线性模型预测控制器的设计。算法采用双模控制策略,将保证预测控制算法稳定性的终点等式约束转化为终点不等式约束,以利于遗传算法的实施。基于不变集理论,给出了非线性模型预测控制算法的稳定性定理。仿真结果表明了所提出控制算法的可行性和有效性。  相似文献   

4.
A new predictive control framework for chemical processes is presented, that has a number of fundamental differences to classical MPC. Both future disturbances and future process measurements are explicitly introduced in the model prediction, while back-off prevents violation of the inequality constraints. A feedforward trajectory, used for constraint pushing, is optimized simultaneously with a linear time-varying feedback controller, used to minimize the back-off. No feedback is generated by the receding horizon implementation itself. Via several transformations, the resulting optimization problem is rendered convex. For nonlinear processes, this applies to the sub-problem in a sequential conic optimization approach. A two stage LQG approach reduces the complexity even further for large scale systems. The method is illustrated on a HDPE reactor example and compared to a LTV-MPC.  相似文献   

5.
This paper proposes an LMI approach to model predictive control of nonlinear systems with switching between multiple modes. In this approach, at each mode, the nonlinear system is divided to a linearized model in addition to a nonlinear term. A sum of squares (SOS) optimization problem is presented to find a quadratic bound for the nonlinear part. The stability condition of the switching system is obtained by using a discrete Lyapunov function and then the sufficient state feedback control law is achieved so that guarantees the stability of the system and also minimizes an infinite prediction horizon performance index. Moreover, two other LMI optimization problems are solved at each mode in order to find the maximum area region of convergence of the nonlinear system inscribed in the region of stability. The performance and effectiveness of the proposed MPC approach are illustrated by two case studies.  相似文献   

6.
We focus on the development of a Lyapunov-based economic model predictive control (LEMPC) method for nonlinear singularly perturbed systems in standard form arising naturally in the modeling of two-time-scale chemical processes. A composite control structure is proposed in which, a “fast” Lyapunov-based model predictive controller (LMPC) using a quadratic cost function which penalizes the deviation of the fast states from their equilibrium slow manifold and the corresponding manipulated inputs, is used to stabilize the fast dynamics while a two-mode “slow” LEMPC design is used on the slow subsystem that addresses economic considerations as well as desired closed-loop stability properties by utilizing an economic (typically non-quadratic) cost function in its formulation and possibly dictating a time-varying process operation. Through a multirate measurement sampling scheme, fast sampling of the fast state variables is used in the fast LMPC while slow-sampling of the slow state variables is used in the slow LEMPC. Appropriate stabilizability assumptions are made and suitable constraints are imposed on the proposed control scheme to guarantee the closed-loop stability and singular perturbation theory is used to analyze the closed-loop system. The proposed control method is demonstrated through a nonlinear chemical process example.  相似文献   

7.
In this note the optimality property of nonlinear model predictive control (MPC) is analyzed. It is well known that the MPC approximates arbitrarily well the infinite horizon (IH) controller as the optimization horizon increases. Hence, it makes sense to suppose that the performance of the MPC is a not decreasing function of the optimization horizon. This work, by means of a counterexample, shows that the previous conjecture is fallacious, even for simple linear systems.  相似文献   

8.
This work considers enhancing the stability and improving the economic performance of nonlinear model predictive control in the presence of disturbances or model uncertainties. First, a robust control Lyapunov function (RCLF)-based predictive control strategy is proposed. Second, the approximate dynamic programming (ADP) is employed to further improve regulation performance. Finally, the ADP and RCLF-MPC are combined to provide a switching control scheme, which is illustrated on a CSTR example to show its effectiveness.  相似文献   

9.
A constrained output feedback model predictive control approach for nonlinear systems is presented in this paper. The state variables are observed using an unscented Kalman filter, which offers some advantages over an extended Kalman filter. A nonlinear dynamic model of the system, considered in this investigation, is developed considering all possible effective elements. The model is then adaptively linearized along the prediction horizon using a state-dependent state space representation. In order to improve the performance of the control system as many linearized models as the number of prediction horizons are obtained at each sample time. The optimum results of the previous sample time are utilized for linearization at the current sample time. Subsequently, a linear quadratic objective function with constraints is formulated using the developed governing equations of the plant. The performance and effectiveness of the proposed control approach is validated both in simulation and through real-time experimentation using a constrained highly nonlinear aerodynamic test rig, a twin rotor MIMO system (TRMS).  相似文献   

10.
Generalized terminal state constraint for model predictive control   总被引:1,自引:0,他引:1  
A terminal state equality constraint for Model Predictive Control (MPC) laws is investigated, where the terminal state/input pair is not fixed a priori but it is a free variable in the optimization. The approach, named “generalized” terminal state constraint, can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC (i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is shown that the proposed technique provides, in general, a larger feasibility set with respect to the existing approaches, given the same prediction horizon. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of the new technique are illustrated by an inverted pendulum example in both the tracking and the economic contexts.  相似文献   

11.
A novel tuning strategy based on RPN for MIMO MPC is presented. The RPN indicates how potentially difficult it is for a given system to achieve the desired performance robustly. It reflects both the attainable performance of a system and its degree of directionality. These system's properties are the basis of the proposed RPN-MPC tuning strategy, which is applied in the controller design of an air separation plant and a CSTR with the Van de Vusse's reaction. Although it was only used a linear nominal model, the results can also be applied at least at some extent for nonlinear systems with uncertainties.  相似文献   

12.
The event-triggered control is of compelling features in efficiently exploiting system resources, and thus has found many applications in sensor networks, networked control systems, multi-agent systems and so on. In this paper, we study the event-triggered model predictive control (MPC) problem for continuous-time nonlinear systems subject to bounded disturbances. An event-triggered mechanism is first designed by measuring the error between the system state and its optimal prediction; the event-triggered MPC algorithm that is built upon the triggering mechanism and the dual-mode approach is then designed. The rigorous analysis of the feasibility and stability is conducted, and the sufficient conditions for ensuring the feasibility and stability are developed. We show that the feasibility of the event-triggered MPC algorithm can be guaranteed if, the prediction horizon is designed properly and the disturbances are small enough. Furthermore, it is shown that the stability is related to the prediction horizon, the disturbance bound and the triggering level, and that the state trajectory converges to a robust invariant set under the proposed conditions. Finally, a case study is provided to verify the theoretical results.  相似文献   

13.
Nonlinear model predictive control (NMPC) can directly handle multi-input multi-output nonlinear systems and explicitly consider input and state constraints. However, the computational load for nonlinear programming (NLP) of large-scale systems limits the range of possible applications and degrades NMPC performance. An NLP sensitivity based approach, advanced-step NMPC, has been developed to address the online computational load. In addition, for cases where the NLP solving time exceeds one sampling time, two types of advanced-multi-step NMPC (amsNMPC), parallel and serial, have been proposed. However, in previous studies, a serial amsNMPC could not be applied to large-scale problems because of the size of extended Karush–Kuhn–Tucker matrix and its Schur complement decomposition, and the robustness was analyzed under a conservative assumption for memory effects. In this paper, we propose a serial amsNMPC using an extended sensitivity method to increase the online computation speed further. We successfully apply it to a large-scale air separation unit using the sparse matrix handling packages of Python, Pyomo, and k_aug tools. Furthermore, an auxiliary NLP formulation is defined to analyze the robustness. Using this with the key properties of an extended sensitivity matrix, we can prove robustness while avoiding the memory effects term.  相似文献   

14.
There typically exist different and often conflicting control objectives, e.g., reference tracking, robustness and economic performance, in many chemical processes. The current work considers the multi-objective control problems of continuous-time nonlinear systems subject to state and input constraints and multiple conflicting objectives. We propose a new multi-objective nonlinear model predictive control (NMPC) design within the dual-mode paradigm, which guarantees stability and constraint satisfaction. The notions of utopia point and compromise solution are used to reconcile the confliction of the multiple objectives. The designed controller minimizes the distance of its cost vector to a vector of independently minimized objectives, i.e., the steady-state utopia point. Recursive feasibility is established via a particular terminal region formulation while stabilizing the closed-loop system to the compromise solution via the dual-mode control principle. In order to derive the terminal region as large as possible, a terminal control law with free-parameters is constructed by using the control Lyapunov functions (CLFs) technique. Two examples of multi-objective control of a CSTR and a free-radical polymerization process are used to illustrate the effectiveness of the new multi-objective NMPC and to compare their performance.  相似文献   

15.
The problem of robust adaptive predictive control for a class of discrete-time nonlinear systems is considered. First, a parameter estimation technique, based on an uncertainty set estimation, is formulated. This technique is able to provide robust performance for nonlinear systems subject to exogenous variables. Second, an adaptive MPC is developed to use the uncertainty estimation in a framework of min–max robust control. A Lipschitz-based approach, which provides a conservative approximation for the min–max problem, is used to solve the control problem, retaining the computational complexity of nominal MPC formulations and the robustness of the min–max approach. Finally, the set-based estimation algorithm and the robust predictive controller are successfully applied in two case studies. The first one is the control of anonisothermal CSTR governed by the van de Vusse reaction. Concentration and temperature regulation is considered with the simultaneous estimation of the frequency (or pre-exponential) factors of the Arrhenius equation. In the second example, a biomedical model for chemotherapy control is simulated using control actions provided by the proposed algorithm. The methods for estimation and control were tested using different disturbances scenarios.  相似文献   

16.
A neural network model predictive controller   总被引:2,自引:0,他引:2  
A neural network controller is applied to the optimal model predictive control of constrained nonlinear systems. The control law is represented by a neural network function approximator, which is trained to minimize a control-relevant cost function. The proposed procedure can be applied to construct controllers with arbitrary structures, such as optimal reduced-order controllers and decentralized controllers.  相似文献   

17.
In this work, we consider nonlinear systems with input constraints and uncertain variables, and develop a robust hybrid predictive control structure that provides a safety net for the implementation of any model predictive control (MPC) formulation, designed with or without taking uncertainty into account. The key idea is to use a Lyapunov-based bounded robust controller, for which an explicit characterization of the region of robust closed-loop stability can be obtained, to provide a stability region within which any available MPC formulation can be implemented. This is achieved by devising a set of switching laws that orchestrate switching between MPC and the bounded robust controller in a way that exploits the performance of MPC whenever possible, while using the bounded controller as a fall-back controller that can be switched in at any time to maintain robust closed-loop stability in the event that the predictive controller fails to yield a control move (due, e.g., to computational difficulties in the optimization or infeasibility) or leads to instability (due, e.g., to inappropriate penalties and/or horizon length in the objective function). The implementation and efficacy of the robust hybrid predictive control structure are demonstrated through simulations using a chemical process example.  相似文献   

18.
L. Magni  R. Scattolini 《Automatica》2006,42(7):1231-1236
This note presents a stabilizing decentralized model predictive control (MPC) algorithm for nonlinear discrete time systems. No information is assumed to be exchanged between local control laws. The stability proof relies on the inclusion of a contractive constraint in the formulation of the MPC problem.  相似文献   

19.
针对跟踪问题中无状态和输入约束的非线性预测控制最优解的求取问题,引入参考输入轨迹的概念,利用Stirling插值公式,将非线性系统模型沿参考输入输出轨迹展开,取其一阶近似,处理成参数已知的线性模型.在此基础上,利用线性系统预测控制理论求解得到原系统的次优控制律.该方法不要求系统模型连续可导,且无需对线性化后的模型参数进行在线辨识,计算量小,易于实现.  相似文献   

20.
约束非线性系统构造性模型预测控制   总被引:3,自引:0,他引:3  
何德峰  薛美盛  季海波 《控制与决策》2008,23(11):1301-1304,1310
研究了连续时间约束非线性系统模型预测控制设计.利用控制Lyapunov函数离线构造单变量可调预测控制器,再根据性能指标在线优化可调参数,其中该参数近似于闭环系统的"衰减率".同时,控制Lyapunov函数保证了算法的可行性和闭环系统的稳定性.最后通过数值仿真验证了该算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号