首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green rusts, ferrous-ferric iron oxides, occur in many anaerobic soils and sediments and are highly reactive, making them important phases impacting the fate and transport of environmental contaminants. Despite their potential importance in environmental settings, reactions involving green rusts remain rather poorly described. Chromate is a widespread contaminant having deleterious impacts on plant and animal health; its fate may in part be controlled by green rust. Here we examine chromate reduction by a series of green rust phases and resolve the reaction kinetics at pH 7. The overall kinetics of the reactions are well described by the expression d[Cr(VI)]/dt = -k[Cr(VI)][GR], and this model was successfully used to predict rates of reaction at varying chromium concentrations. The rates of reduction are controlled by the concentration of ferrous iron, surface area, and chemical structure of the green rust including layer spacing. On a mass basis, green rust (GR) chloride is the most rapid reductant of Cr(VI) followed by GRCO3 and GRSO4, with pseudo-first-order rate coefficients (k(obs)) (with respect to Cr(VI) concentration) ranging from 1.22 x 10(-3) to 3.7 x 10(-2) s(-1). Chromium(III)-substituted magnetite and lepidocrocite were identified as the major oxidation products. The nature of the oxidation products appears to be independent of the anionic class of green rust, but their respective concentrations display a dependence on the initial GR. The mole fraction of Fe(III) in the Cr(x),Fe(1-x)(OH)3 x nH2O reaction product ranged from 17% to 68%, leading to a highly stabilized (low solubility) phase.  相似文献   

2.
Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal   总被引:3,自引:0,他引:3  
The kinetics of nitrate, nitrite, and Cr(VI) reduction by three types of iron metal (Fe0) were studied in batch reactors for a range of Fe0 surface area concentrations and solution pH values (5.5-9.0). At pH 7.0, there was only a modest difference (2-4x) in first-order rate coefficients (k(obs)) for each contaminant among the three Fe0 types investigated (Fisher, Peerless, and Connelly). The k(obs) values at pH 7.0 for both nitrite and Cr(VI) reduction were first-order with respect to Fe0 surface area concentration, and average surface area normalized rate coefficients (kSA) of 9.0 x 10(-3) and 2.2 x 10(-1) L m(-2) h(-1) were determined for nitrite and Cr(VI), respectively. Unlike nitrite and Cr(VI), Fe0 surface area concentration had little effect on rates of nitrate reduction (with the exception of Connelly Fe0, which reduced nitrate at slower rates at higher Fe0 surface areas). The rates of nitrate, nitrite, and Cr(VI) reduction by Fisher Fe0 decreased with increasing pH with apparent reaction orders of 0.49 +/- 0.04 for nitrate, 0.61 +/- 0.02 for nitrite, and 0.72 +/- 0.07 for Cr(VI). Buffer type had minimal effects on reduction rates, indicating that pH was primarily responsible for the differences in rate. At high pH values, Cr(VI) reduction ceased after a short time period, and negligible nitrite reduction was observed over 48 h.  相似文献   

3.
The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.  相似文献   

4.
This study investigated Cr(VI) reduction by dissolved Fe(II) in hyperalkaline pH conditions as found in fluid wastes associated with the U.S. nuclear weapons program. The results show that Cr(VI) reduction by Fe(II) at alkaline pH solutions proceeds very quickly. The amount of Cr(VI) removed from solution and the amount reduced increases with Fe(II):Cr(VI) ratio. However, the Cr(VI) reduction under alkaline pH condition is nonstoichiometric, probably due to Fe(II) precipitation and mixed iron(III)-chromium-(III) (oxy)hydroxides blocking Fe(II) surface sites, as well as removing Fe(II) from solution through O2 oxidation. After Cr(VI) was reduced to Cr(III), it precipitated out as mixed Fe(x)Cr1-xO3(solids) and various Fe(III) precipitates with an overall Cr:Fe ratio of 1:3; all Cr remaining in the solution phase was unreduced Cr(VI). EXAFS data showed that Cr-O and Cr-Cr distances in the precipitates equal to 1.98 and 3.01 A, respectively, consistent with the spinel-type structure as chromite.  相似文献   

5.
Aluminum-rich, hyperalkaline (pH > 13.5) and saline high-level nuclear waste (HLW) fluids at elevated temperatures (>50 degrees C), that possibly contained as much as 0.41 mol L(-1) Cr(VI), accidentally leaked to the sediments at the Hanford Site, WA. These extreme conditions promote base-induced dissolution of soil minerals which may affect Cr(VI)aq mobility. Our objective was to investigate Cr(VI)aq transport in sediments leached with HLW simulants at 50 degrees C, under CO2 and O2 free conditions. Results demonstrated that Cr(VI)aq fate was closely related to dissolution, and Cr(VI)aq mass loss was negligible in the first pore volumes but increased significantly thereafter. Similar to dissolution, Cr(VI)aq attenuation increased with increasing fluid residence time and NaOH concentration but decreased with Al concentrations in the leaching solutions. Aqueous Cr(VI) removal rate half-lives varied from 1.2 to 230 h with the fastest at the highest base concentration, lowest Al concentration, greatest reaction time, and lowest Cr(VI) concentration in the leaching solution. The rate of Cr(VI) removal (normalized to 1 kg of solution) varied from 0.83 x 10(-9) (+/-0.44 x 10(-9)) to 9.16 x 10(-9) (+/-1.10 x 10(-9)) mol s(-1). The predominant mechanism responsible for removing Cr(VI) from the aqueous phase appears to be homogeneous Cr(VI) reduction to Cr(III) by Fe(II) released during mineral dissolution. Cr(VI)aq removal was time-limited probably because it was controlled by the rate of Fe(II) release into the soil solution upon mineral dissolution, which was also a time-limited process, and other processes that may act to lower Fe(II)aq activity.  相似文献   

6.
The photochemical reduction of Cr(VI) by iron and aquatic dissolved organic matter (DOM) was investigated. DOM sampled from a number of surface waters (a eutrophic wetland, a blackwater stream, and river water from a mix-use watershed) was used in this study. Moreover, a fulvic acid from Lake Fryxell, Antarctica, was also used to represent a DOM derived from a strictly autochthonous source. Cr(VI) reduction to Cr(III) at pH 5.5 was observed for all target DOMs used in this study, but rates varied widely. In general, photoreduction rates increased with increasing iron concentrations, but the type of DOM appeared to influence the kinetics to a larger degree. The rate of reduction was significantly greater for DOM derived from terrestrial systems than from predominantly autochthonous materials even if additional iron was added to the later. A positive correlation was observed between rates of Cr(VI) photoreduction and properties of the isolated DOM samples whereby faster reduction was observed for larger more aromatic substrates. On the basis of the fast rates reported for the dark reduction of Cr(VI) to Cr(III) by Fe(II)-organic ligands, we hypothesize that the rate-limiting step in these reactions is the photoreduction of Fe(III) to Fe(II) by a ligand-to-metal charge-transfer pathway after absorption of light by Fe(III)-DOM complexes or by reduction of Fe(III) by superoxide or other intermediates formed after light absorption by DOM. Thus, the rate of Cr(VI) photoreduction to Cr(III) in natural sunlit waters is dependent upon both the amount of iron present and the nature of the dissolved organic matter substrate.  相似文献   

7.
Nanoscale zerovalent iron (NZVI) was aged over 30 days in suspension (2 g/L) with different anions (chloride, perchlorate, sulfate, carbonate, nitrate), anion concentrations (5, 25, 100 mN), and pH (7, 8). During aging, suspension samples were reacted periodically with 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and Cr(VI) to determine the time scales and primary mode of NZVI reactivity loss. Rate constants for 1,1,1,2-TeCA reduction in Cl(-), SO(4)(2-), and ClO(4)(-) suspensions decreased by 95% over 1 month but were generally equivalent to one another, invariant of concentration and independent of pH. In contrast, longevity toward 1,1,1,2-TeCA depended upon NO(3)(-) and HCO(3)(-) concentration, with complete reactivity loss over 1 and 14 days, respectively, in 25 mN suspensions. X-ray diffraction suggests that reactivity loss toward 1,1,1,2-TeCA in most systems results from Fe(0) conversion into magnetite, whereas iron carbonate hydroxide formation limits reactivity in HCO(3)(-) suspensions. Markedly different trends in Cr(VI) removal capacity (mg Cr/g NZVI) were observed during aging, typically exhibiting greater longevity and a pronounced pH-dependence. Notably, a strong linear correlation exists between Cr(VI) removal capacities and rates of Fe(II) production measured in the absence of Cr(VI). While Fe(0) availability dictates longevity toward 1,1,1,2-TeCA, this correlation suggests surface-associated Fe(II) species are primarily responsible for Cr(VI) reduction.  相似文献   

8.
The reactivity of aqueous Fe(II) with aluminum oxide in anoxic solutions was investigated with batch kinetic experiments combined with Fe K edge X-ray absorption spectroscopy measurements to characterize Fe(II) sorption products. Formation of Fe(II)-Al(III)-layered double hydroxides with an octahedral sheet structure similar to nikischerite (NaFe(II)(6) Al(3)(SO(4))(2)(OH)(18) (H(2)O)(12)) was observed within a few hours during sorption at pH 7.5 and aqueous Fe(II) concentrations of 1-3 mM. These Fe(II) phases are composed of brucite-like Fe(II)(OH)(2) sheets with partial substitution of Al(III) for Fe(II), charge balanced by anions coordinated along the basal planes. Their fast rate of formation suggests that these previously unrecognized Fe(II) phases, which are structurally and compositionally similar to green rust, may be an important sink of Fe(II) in suboxic and anoxic geochemical environments, and impact the fate of structurally compatible trace metals, such as Co(II), Ni(II), and Zn(II), as well as redox-reactive species including Cr(VI) and U(VI). Further studies are required to assess the thermodynamics, formation kinetics, and stability of these Fe(II) minerals under field conditions.  相似文献   

9.
The mechanisms of hexavalent chromium [Cr(VI)] co-removal with copper [Cu(II)] during homogeneous precipitation were studied with batch tests using a synthetic solution containing Cr(VI) and Cu(II). Metal precipitation was induced by adding Na2CO3 stepwise to different pH, and the respective removals of Cu(II) and Cr(VI) were measured. At the same time, the relative quantities of Cu(II) and Cr(VI) in the precipitates were also analyzed to establish their stoichiometric relationship. The results indicated that, in a solution containing 150 mg/L Cu(II) and 60 mg/L Cr(VI), the initial co-removal of Cr(VII with Cu(II) began at pH 5.0 and completed at pH 6.2. At pH 5.0-5.2, coprecipitation took place through the formation of copper-chromium-bearing solids [such as CuCrO4 and/or CuCrO4 x 2Cu(OH)2]. Thereafter, the remaining soluble copper started to react with carbonate in a heterogeneous environment to form the negatively charged basic copper carbonate precipitates [CuCO3 x Cu(OH)2], which subsequently adsorbed additional Cr(VI) (or HCrO4-) at pH 5.2-6.2. The maximum Cr(VI) co-removal took place at pH 6.2. Between the two mechanisms, co-precipitation accounted for about 29% of the total chromium's co-removal while the remaining 71% was attributed to surface adsorption, mainly through electrostatic attraction and ligand exchange. When the solution pH was increased to beyond 7.5, a surface charge reversal took place on the basic copper carbonate solids, and this led to some Cr(VI) desorption. Thus, the extent of Cr(VI) adsorption is highly pH dependent.  相似文献   

10.
Cr stable isotope measurements can provide improved estimates of the extent of Cr(VI) reduction to less toxic Cr(III). The relationship between observed (53)Cr/(52)Cr ratio shifts and the extent of reduction can be calibrated by determining the isotopic fractionation factor for relevant reactions. Permeable reactive barriers (PRB) made of Fe(0) and in situ redox manipulation (ISRM) zones effectively remediate Cr-contaminated aquifers. Here, we determine the isotopic fractionations for dominant reductants in reactive barriers and reduced sediments obtained from an ISRM zone at the US DOE's Hanford site. In all cases, significant isotopic fractionation was observed; fractionation (expressed as ε) was -3.91‰ for Fe(II)-doped goethite, -2.11‰ for FeS, -2.65‰ for green rust, -2.67‰ for FeCO(3), and -3.18‰ for ISRM zone sediments. These results provide a better calibration of the relationship between Cr isotope ratios and the extent of Cr(VI) reduction and aid in interpretation of Cr isotope data from systems with reactive barriers.  相似文献   

11.
Photoreduction of Cr(VI) involving Fe is strongly affected by the presence of organic or inorganic compounds in an acidic environment. In this study, we have found a new pathway of Cr(VI) photoreduction in the presence of Fe-(III) that is influenced by two inorganic electrolytes (i.e., NO3- and Cl-) and the pH. In NO3- and Cl- systems without Fe(III), Cr(VI) photoreduction could occur and was independent of the Cr(VI) concentration. The zero-order rate constant of the photoreduction reaction increased when the solution pH was decreased from 2 to 1; the reaction rate was higher in the NO3- system than in the Cl- system. The higher reaction rate in the NO3- system was attributed to the photolysis of NO3-, which resulted in the formation of NO2- for reduction of Cr(VI). Conversely, the effect of Fe-(III) addition on the increase in Cr(VI) photoreduction rate in the Cl- system was more significant than that in the NO3- system. The addition of Fe(III) to the Cl- system caused the formation of [Fe(OH2)5Cl]2+, the photolysis of which subsequently resulted in the formation of Fe(II) for reduction of the Cr(VI). This study suggests that the photolysis of NO3- and Fe-Cl complex may contribute significantly to Cr(VI) reduction in surface water that receives electroplating wastewater containing high levels of NO3-, Cl-, and Fe-(III). Therefore, under the acidic conditions that are favorable for Fe-Cl complex formation or in the presence of NO3-, the effects of inorganic components on Cr(VI) photoreduction cannot be ignored for the precise evaluation of the transformation of Cr in the environment.  相似文献   

12.
Chromate is a widespread contaminantthat has deleterious impacts on human health, the mobility and toxicity of which are diminished by reduction to Cr(III). While biological and chemical reduction reactions of Cr(VI) are well resolved, reduction within natural sediments, particularly of arid environments, remains poorly described. Here, we examine chromate reduction within arid sediments from the Hanford, WA site, where Fe(III) (hydr)oxide and carbonate coatings limit mineral reactivity. Chromium(VI) reduction by Hanford sediments is negligible unless pretreated with acid; acidic pretreatment of packed mineral beds having a Cr(VI) feed solution results in Cr(III) associating with the minerals antigorite and lizardite in addition to magnetite and Fe(II)-bearing clay minerals. Highly alkaline conditions (pH > 14), representative of conditions near high-level nuclearwaste tanks, result in Fe(II) dissolution and concurrent Cr(VI) reduction. Additionally, Cr(III) and Cr(VI) are found associated with portlandite, suggesting a secondary mechanism for chromium retention at high pH. Thus, mineral reactivity is limited within this arid environment and appreciable reduction of Cr(VI) is restricted to highly alkaline conditions resulting near leaking radioactive waste disposal tanks.  相似文献   

13.
The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 microM Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and was inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.  相似文献   

14.
The rate and extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation was measured in the presence of carbonate and sulfate green rust suspended in solutions containing common groundwater anions. Formaldehyde (HCHO), nitrous oxide gas (N2O(g)), and ammonium (NH4+) were the major end products, accounting for about 70% of the carbon mass balance and about half of the nitrogen mass balance. Results from experiments with both 14C-RDX and LC-MS analysis indicate that the remaining carbon products are soluble and most likely small (< 50 Da). The transient appearance of 1,3-dinitro-5-nitroso-1,3,5-triazacyclohexane (MNX), 1,3-dinitroso-5-nitro-1,3,5-triazacyclohexane (DNX), and 1,3,5-trinitroso-1,3,5-triazacyclohexane (TNX) indicate that some nitro-group reduction occurred. The kinetics of RDX transformation was rapid with a half-life of less than an hour in a pH 7.0 KBr solution. Little difference in rates of RDX transformation or product distribution was observed between carbonate and sulfate green rust, and an apparent reaction order of 1.0 was measured with respect to Fe(II) in both green rusts. Phosphate anions completely inhibited RDX reduction, and carbonate and sulfate anions resulted in slower kinetics, and in some cases, an initial lag period, compared to bromide and chloride. Our results suggest that green rusts may contribute to abiotic natural attenuation of RDX in Fe-rich subsurface environments, but that it will be important to consider groundwater composition when assessing rates of attenuation.  相似文献   

15.
We demonstrated that mesoporous titania beads of uniform size (about 450 μm) and high surface area could be synthesized via an alginate biopolymer template method. These mesoporous titania beads could efficiently remove Cr(VI), Cd(II), Cr(III), Cu(II), and Co(II) ions from simulated wastewater with a facile subsequent solid-liquid separation because of their large sizes. We chose Cr(VI) removal as the case study and found that each gram of these titania beads could remove 6.7 mg of Cr(VI) from simulated wastewater containing 8.0 mg·L(-1) of Cr(VI) at pH = 2.0. The Cr(VI) removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The Cr(VI) removal mechanism of titania beads might be attributed to the electrostatic adsorption of Cr(VI) ions in the form of negatively charged HCrO(4)(-) by positively charged TiO(2) beads, accompanying partial reduction of Cr(VI) to Cr(III) by the reductive surface hydroxyl groups on the titania beads. The used titania beads could be recovered with 0.1 mol·L(-1) of NaOH solution. This study provides a promising micro/nanostructured adsorbent with easy solid-liquid separation property for heavy metal ions removal.  相似文献   

16.
The reductive dechlorination of carbon tetrachloride (CT) by Fe(II)-Fe(III) hydroxide (green rust) intercalated with dodecanoate, Fe(II)(4)Fe(III)(2)(OH)(12)(C(12)H(23)O(2))(2) · yH(2)O (designated GR(C12)), at pH ~ 8 and at room temperature was investigated. CT at concentration levels similar to those found in heavily contaminated groundwater close to polluted industrial sites (14-988 μM) was reduced mainly to the fully dechlorinated products carbon monoxide (CO, yields >54%) and formic acid (HCOOH, yields >6%). Minor formation of chloroform (CF), the only chlorinated degradation product, was also detected (yields <6.3%). Reactions carried out with excess GR followed pseudo first-order kinetics with respect to CT with rate constants ranging from 6.5 × 10(-2) to 0.47 h(-1). These rate constants are comparable to those measured for CT dechlorinations mediated by zerovalent iron. Reduction of the highest concentration of CT (1.4 mM) proceeds until 56% of the Fe(II) sites of GR(C12) was consumed. This reaction ceased after 10 h due to surface passivation of GR(C12).  相似文献   

17.
Reductive capacities of soil minerals and soil for Cr(VI) and chlorinated ethylenes were measured and characterized to provide basic knowledge for in-situ and ex-situ treatment using these natural reductants. The reductive capacities of iron-bearing sulfide (pyrite), hydroxide (green rust; GR(SO4)), and oxide (magnetite) minerals for Cr(VI) and tetrachloroethylene (PCE) were 1-3 orders of magnitude greater than those of iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). The reductive capacities of surface soil collected from the plains of central Texas were similar and slightly greater than those of iron-bearing phyllosilicates. The reductive capacity of iron-bearing soil minerals for Cr(VI) was roughly 3-16 times greater than that for PCE, implying that Cr(VI) is more susceptible to being reduced by soil minerals than is PCE. GR(SO4) has the greatest reductive capacity for both Cr(VI) and PCE followed by magnetite, pyrite, biotite, montmorillonite, and vermiculite. This order was the same for both target compounds, which indicates that the relative reductive capacities of soil minerals are consistent. The reductive capacities of pyrite and GR(SO4) for chlorinated ethylenes decreased in the order: trichloroethylene (TCE) > PCE > cis-dichloroethylene (c-DCE) > vinyl chloride (VC). Fe(II) content in soil minerals was directly proportional to the reductive capacity of soil minerals for Cr(VI) and PCE, suggesting that Fe(II) content is an important factor that significantly affects reductive transformations of target contaminants in natural systems.  相似文献   

18.
A flow-through pilot-scale system was tested for removal of Cr(VI) from contaminated groundwater in Glendale, California. The process consisted of the reduction of Cr(VI) to Cr(lll) using ferrous sulfate followed by coagulation and filtration. Results indicated that the technology could reduce influent Cr(VI) concentrations of 100 microg L(-1) to below detectable levels and also remove total Cr (Cr(VI) plus Cr(lll)) to very low concentrations (< 5 microg L(-1)) under optimized conditions. Complete reduction of Cr(VI) to Cr(lll) was accomplished with Fe(ll) doses of 10-50 times the Cr(Vl) concentration even in the presence of significant dissolved oxygen levels. The overall Cr removal efficiency was largely determined by the filterability of Cr(lll) and Fe(lll) precipitates, of which a relatively high filtration pH (7.5-7.6) and high filter loading rate (6 gpm ft(-2)) had negative impacts. The pilot system was able to operate for an extended time period (23-46 h depending on the Fe:Cr mass ratio) before turbidity breakthrough or high head loss. Backwash water was effectively settled with low doses (0.2-1.0 mg L(-1)) of high molecular weight polymer. Backwash solids were found to be nonhazardous bythe toxicity characteristic leaching procedure but hazardous by the California waste extraction test.  相似文献   

19.
20.
The influence of sediment bioreduction and reoxidation on U(VI) sorption was studied using Fe(II) oxide-containing saprolite from the U.S. Department of Energy (DOE) Oak Ridge site. Bioreduced sediments were generated by anoxic incubation with a metal-reducing bacterium, Shewanella putrefaciens strain CN32, supplied with lactate as an electron donor. The reduced sediments were subsequently reoxidized by air contact. U(VI) sorption was studied in NaNO3-HCO3 electrolytes that were both closed and open to atmosphere and where pH, U(VI), and carbonate concentration were varied. M?ssbauer spectroscopy and chemical analyses showed that 50% of the Fe(III)-oxides were reduced to Fe(II) that was sorbed to the sediment during incubation with CN32. However, this reduction and subsequent reoxidation of the sorbed Fe(II) had negligible influence on the rate and extent of U sorption or the extractability of sorbed U by 0.2 mol/L NaHCO3. Various results indicated that U(VI) surface complexation was the primary process responsible for uranyl sorption by the bioreduced and reoxidized sediments. A two-site, nonelectrostatic surface complexation model best described U(VI) adsorption under variable pH, carbonate, and U(VI) conditions. A ferrihydrite-based diffuse double layer model provided a better estimation of U(VI) adsorption without parameter adjustment than did a goethite-based model, even though a majority of the Fe(III)-oxides in the sediments were goethite. Our results highlight the complexity of the coupled U-Fe redox system and show that sorbed Fe(II) is not a universal reductant for U(VI) as commonly assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号