首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of biodegradable block copolymer of poly(lactide)(PLA)/poly(ethylene glycol) (PEG) were prepared by Ring-Opening polymerization of D, L-lactide, using stannous octoate as a catalyst. By nanoprecipitation method, the PLA-PEG can be made into microspheres containing fenofibrate, which is a kind of important cholesterol-lowering drugs. The purpose of this study is to investigate the effect of the copolymer composition on the size, the entrapment and the release behavior of the fenofibrate loaded microspheres. The microspheres can be achieved with small size below 100 nm, better encapsulation efficiencies of more than 55.3% and slower release rates. The release of fenofibrate from microsphere would reach the balance first, when the microsphere prepared by high proportion of hydrophilic PEG block. And the release property of fenofibrate/PLA-PEG microsphere was better than Lipanthyl (a commercial capsule of fenofibrate). It was observed that the composition of PLA-PEG copolymer played a major role in encapsulation efficiency of microspheres and release rates.  相似文献   

2.
The impedance of polystyrene-onion-like-carbon (PS-OLC) composites in the low-frequency (10–50 kHz) range has been studied as a function of the OLC weight fraction in the material. The composites were fabricated by rolling of PS filled with OLC powder obtained through the annealing of detonation nanodiamonds at 2140 K. The homogeneity of OLC distribution in the PS matrix has been studied as dependent on the number of rolling stages. It is established that the percolation threshold in PS-OLC composites is achieved at an OLC content of 35–40 wt %.  相似文献   

3.
This paper investigated the effect of coupling of direct current (DC) and pulling rate on dendrites and cooling behaviours of directionally solidified Pb–50Sn alloy. Experimental results indicated that the secondary dendritic arm spacing (SDAS) decreased and temperature gradient increased as increasing current densities. Moreover, temperature rise and SDAS under positive DC were higher than those under negative DC. It was speculated that Joule heating and electromigration were obviously induced by the present DC. The effect of DC on the microstructure and solidification parameters was weakened as the pulling rate increases. The coarsening rate reduced from tf1/3 toward a value of tf0.29 when DC of ±200?A?cm–2 were applied. The refinement mechanism of SDAS was discussed.  相似文献   

4.
Specific-heat measurements are reported for nine titanium alloys with and + structures; the temperature of the transition has been revised by DTA. A generalized approximating formula for the specific heat has been derived for the temperature range in which the structural state is stable, which contains a dimensionless parameter that includes the temperature of the transformation.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 4, pp. 593–598, April, 1980.  相似文献   

5.
PLA及PLA复合材料降解性能研究进展   总被引:11,自引:0,他引:11  
简要论述聚乳酸及其复合材料的降解机理和影响因素。围绕聚乳酸及其复合材料的生物相容性、力学性能等,着重综述了近年来国内外研究其降解性能的实验方法、测试手段、试验结果等方面的进展情况。  相似文献   

6.
《广东包装》2009,(5):52-53
美国PrimoWater公司选择了从天然植物中提取的聚乳酸(PLA)做成的包装瓶,它非常适合装水。“消费者已经接受了这种产品,而且此种产品在某些市场中的销量不断增长,”Plastic Technologies公司副总裁ScottSteele解释道,就是这个公司帮助Primo公司开发了PLA包装瓶。  相似文献   

7.
Abstract

Sintered compacts of copper and a 50Cu–50Fe mixture have been plastically deformed to large strains (total strain ?t=13·8) by cyclic extrusion and compression. The hardness changes after deformation indicate that no further work hardening occurs with either material when ?t>4·6. With copper, strain accommodation at large strains would appear to occur solely by dynamic recovery and recrystallisation. With the Cu–Fe mixture, shear banding is still found at the highest strains used.

MST/1609  相似文献   

8.
During times of restricted supply, bearing refurbishment offers an attractive avenue to maintain operational readiness. However, bearing operation after fatigue spall initiation on refurbished bearings has not been extensively studied. In this study, spall propagation characteristics were compared between new and refurbished vacuum induction-melted, vacuum arc remelted AISI M50 208-size angular contact bearings. A control group of new AISI M50 bearings was evaluated for spall propagation characteristics as a baseline. Another group of AISI M50 bearings were subjected to an accumulated 11.5 billion stress cycles at a maximum Hertzian contact stress of 1.93 GPa and a temperature of 127 °C followed by Level II refurbishment. The refurbished bearings were evaluated for spall propagation characteristics and compared to the baseline bearings. Spalls were initiated via seeded Rockwell C hardness indents and propagated at a maximum Hertzian contact stress of 2.65 and 2.41 GPa, respectively, on both groups of bearings. The propagation rates of the bearings were measured in real time using an oil debris monitor. Pre- and post-tested bearings were examined for changes in microstructure, residual stress and retained austenite as a function of depth in the circumferential direction. No statistically significant difference in spall propagation characteristics was observed between new and refurbished bearings at the operating conditions and accumulated stress cycles studied here.  相似文献   

9.
Abstract

The mechanical properties of the rapidly solidified 7000 series powder alloy CW 67 were investigated for various extrusion and heat treatment conditions. The principal aim of the work was to ascertain the optimum processing route for peak aged (T6) material. The highest proof stress in the T6 condition was found to be 572 MN m?2 for material extruded at 325°C and aged for 13·5 h at 120°C after solutionising. The ductility of this material was found to be 13·5%. The fracture toughness was measured in two orientations and found to be approximately 21 MN m?3/2 in the short transverse direction and 44 MN m?3/2 in the longitudinal direction. Degassing and hot compaction was found to improve the fracture toughness of the material substantially.

MST/1504  相似文献   

10.
<正>1.背景(绪言)现今,地球温暖化和石油资源枯竭等环境问题和能源问题将日趋凸显和严重。世界各国对温室气体减排迫切性的重视度也愈加明显。今年底,《联合国气候变化框架公约》第21次缔约方大会(COP21)将在巴黎召开。联合国要求各国提交2020年以后的减排目标,美国和欧盟均已于今年3月提出。日本政府已  相似文献   

11.
In this study, CdSe–ZnS/poly(lactic acid) (PLA) nanocomposite films, containing different concentrations of surface-modified CdSe–ZnS quantum dots (QDs), were prepared via a solution casting method. The optical microstructural and thermal properties of the as-prepared QDs/PLA films were investigated. The QDs/PLA films exhibited strong and stable photoluminescence (PL) intensity with concentration dependent amplitudes. The transmission electron microscopy (TEM) pictures revealed that QDs of ∼5 nm diameter were uniformly dispersed in the PLA matrix. According to the results of thermogravimetric analysis, the weight-loss onset temperature of PLA clearly decreased with the QD content. A combination of Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) results suggested that the QDs exhibit obvious nucleation activity on the crystallization behavior of the PLA matrix. This research provides useful information to the foundations of practical applications of QDs/PLA nanocomposites as fluorescent and biodegradable functionalized materials.  相似文献   

12.
A high-quality superconducting resonator with a microbridge of hafnium film for use in a circuit for readout a terahertz-band imaging array with frequency division multiplexing is demonstrated experimentally. The variability of the impedance of the bridge at a frequency of 1.5 GHz, which is a key factor in the control of the quality of the resonator, is studied. The bridge, having a thickness of about 50 nm, a critical temperature TC ≈ 380 mK, and a plan size of 2.5 × 2.5 μm, was connected as a load of a resonator made of niobium film with a thickness of about 100 nm (TC ~ 9 K). It is shown that the bridge smoothly changes its impedance proportionally to the bias power in the entire temperature range. The effective thermal insulation of the bridge was measured in a dilution cryostat at temperatures of 50–300 mK. Thermal conductivity G of the bridge was calculated and found to be ~4 × 10–13 W/K, which gives an estimate of the sensitivity of the structure in the bolometric mode NEP ≈ 8 × 10–19 W/Hz1/2 at a temperature of 150 mK.  相似文献   

13.
Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light–matter interaction and thus have great potential for versatile applications,spanning from photonic,electronic,and optoelectronic devices to charge-stripping and electromagnetic shielding,etc.However,large-area flexible close-stacked graphene nanofilms with a wide thickness range have yet to be reported.Here,we report a polyacrylonitrile-assisted ’substrate replacement’ strategy to fabricate larg...  相似文献   

14.
Measurements of thermal conductivity of 6N to 3N pure aluminum in the temperature range 5–50 K subjected to fast neutron irradiation, with exposures of 1013 and 1016 n · cm–2, are reported. The thermal conductivity maximum was found to shift towards higher temperatures with an increase in the fast neutron irradiation exposure. At high temperatures, a departure from Wilson's theory was observed, which may be attributed to the existence of additional electron scattering mechanisms. An increase in both ideal and residual thermal resistivity components with an increase in the radiation exposure was noted.Nomenclature I 5 (/t) Debye integral of the fifth order - –m slope of the straight line that crosses maximum thermal conductivity values - n exponent in ideal thermal resistivity component - T m temperature corresponding to maximum thermal conductivity - W e total electronic thermal resistivity - W i ideal thermal resistivity - W 0 residual thermal resistivity - ideal thermal resistivity coefficient in Eq. (4) - ideal thermal resistivity coefficient in Eq. (1) - constant related to the ideal part of thermal resistivity in Eq. (2) - () ideal thermal resistivity coefficient depending on irradiation exposure - () residual thermal resistivity coefficient depending on irradiation exposure - thermal conductivity - m maximum thermal conductivity - Debye characteristic temperature - irradiation exposure  相似文献   

15.
16.
Abstract

Spun cast alloy HP50–Nb tubing retired from service in a steam reformer after approximately 8 years of service had stress rupture properties suggesting very short remaining life. Microstructural examination, however, indicated little or no creep damage (cavitation) but did reveal extensive microstructural modification. The microstructure, mechanical properties, and stress rupture properties of the ex service material were determined and compared with virgin as cast material. The microstructural changes that occurred during service included the formation of phases rich in alloying elements such as chromium and niobium that would otherwise be expected to contribute to high creep strength. The creep life of the service exposed material was correspondingly short. The creep ductility of the service exposed material, however, was significantly higher than that of the as cast material. The implications of these findings for remaining life assessments of reformer furnaces using these materials are discussed.

MST/3207  相似文献   

17.
Abstract

Four aluminium alloys of different zinc/magnesium ratio have been studied under various extrusion conditions. The alloys were cast in steel book moulds and subjected to initial thermomechanical treatments. Studies were made of hot extrusions and cold hydrostatic extrusions and in each case the changes in the extrusion parameters were analysed. An attempt has been made to explain some of the extrusion defects which appeared in various extruded sections. The extrusion speed was found to be crucial, since sections developed surface cracks at higher speeds. The extrusion speed was also found to vary inversely with the extrusion ratio, with higher speeds at low ratios. A well defined solute–depleted weld zone was observed on each of the four faces of a square tube extruded using a porthole die. Thermal treatment was not found to improve this weak weld zone. Tubes extruded using a floating-mandrel die withstood pressure testing up to 550 MPa.

MST/43  相似文献   

18.
The effect of substitution of Pb by Sn in Bi1.6Pb0.4?x Sn x Sr2Ca2Cu3 O δ samples at x = 0.0, 0.1, 0.2, and 0.3 on the critical transition temperature and structural properties was investigated in this work. All the samples were prepared by the solid-state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), resistance–temperature curve (R–T), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The Sn 4+ substitution of Pb 2+ caused significant changes in the properties of the samples. The formation of the (Bi, Pb)-2212 phase was stabilized and the T c (onset) was improved at the x = 0.2 level of Sn 4+ substitution. The SEM micrographs have shown that the structure of the sample with x = 0.2 became more dense. However, samples with x = 0.1 and 0.3 have not shown zero resistance by EDS analysis because of oxygen deficiency.  相似文献   

19.
Abstract

Mixed 50Ni–50Ti powders were milled in an attritor high energy ball mill and the structural evolution of the milled powders characterised by X-ray diffraction analysis. The microstrain, crystallite size, and lattice parameters of the nickel and titanium crystals were measured. The results show that increases in the rotational velocity and the total ball volume/tank volume ratio leads to a decrease in the crystallite size and rapid changes in the microstrain and lattice parameters, which enhance the amorphisation rate, thereby reducing the time required to obtain afully amorphous phase.

MST/2079  相似文献   

20.
Time–temperature–stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature–stress hybrid shift factor and a modified Williams–Landel–Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood–plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time–temperature superposition, whereas vertical shifting would be needed for time–stress superposition. The shift factor was independent of the stress for horizontal shifts in time–temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号