首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium ratios Cr2+/Cr3+ of chromium oxide dissolved in CaO–chromium oxide–Al2O3–SiO2 melts have been determined by analysis of samples equilibrated at 1500°C under strongly reducing conditions ( p o2= 10−9.56 to 10−12.50 atm). The majority of the chromium is divalent (Cr2+) under these conditions and Cr2+/Cr3+ ratios at given constant oxygen pressures decrease with increasing basicity of the melts, expressed as CaO/SiO2 ratios. In addition, Cr2+/Cr3+ ratios, at a given CaO/SiO2 ratio, are relatively unaffected by the amount of Al2O3 present.  相似文献   

2.
Aluminosilicate and silicate glass-ceramics were obtained from controlled devitrification of CaO–Al2O3–SiO2 glassy systems starting from Spanish and Italian coal fly ash or Italian municipal incinerator slag mixed with other byproducts, such as glass cullet and dolomite. The nucleation mechanism and the crystallization kinetics were investigated by thermal, diffractometric, and microstructural measurements. Moreover, the experimentally observed devitrification and the identification of the crystalline phases formed were compared with the indications derived from Ginsberg, Raschin-Tschetveritkov, and Lebedeva diagrams used for petrological glass-ceramics. All the glasses showed a good crystallization tendency with the formation of dendritic pyroxene and acicular wollastonite together with feldspar and iron spinels starting from the surface. The activation energy values for crystallization ranging from 472 to 832 kJ ·mol−1 were found to be close to those typical for aluminosilicate glasses; moreover, the possibility to vitrify and devitrify up to 100 wt% of slag and up to 40–50 wt% of ash mixed with glass cullet and dolomite makes the vitrification treatment a suitable disposal procedure.  相似文献   

3.
4.
5.
In this work, the liquidus of synthetic CaO–SiO2–MgO–Al2O3–CrO x slags is evaluated in the industrially relevant compositional domain. Equilibrium experiments are carried out at 1500°C and partial oxygen pressure ( p O2) 10−11.04 atm, and at 1600°C and p O2=10−10.16 and 10−9.36 atm. The studied basicities (CaO/SiO2) are 1.2 and 0.5. Al2O3 levels range from 0 to 30 wt%. Oversaturated liquid is sampled and phase relations are measured with quantitative electron probe microanalysis–wavelength dispersive spectroscopy (EPMA–WDS). The results are compared with the commercially available FactSage thermodynamic databases. Qualitative agreement is always obtained. Also a good quantitative agreement is found at the higher basicity, especially for the spinel liquidus. A minor but systematic deviation can be observed for the eskolaite liquidus. At the lower basicity, the calculated phase diagram deviates strongly from the experimental results, probably due to missing ternary interactions in the database.  相似文献   

6.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

7.
Compatibility relations of Al2O3 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching followed by microstructural and energy-dispersive X-ray examination. A projection of the liquidus surface of the primary phase volume of Al2O3 was constructed in terms of the CaO, SiO2, and MgO contents of the mixtures recalculated to 100 wt%. Two invariant points, where four solids coexist with a liquid phase, were defined, and the positions of the isotherms were tentatively established. The effect of SiO2, MgO, and CaO impurities on Al2O3 growth also was studied.  相似文献   

8.
In this final paper of a series on viscosity in the system CaO—MgO-Al2O3SiO2 data are presented for melts containing 60 and 65% SiO2. There also are diagrammatic presentations of the systems of isokoms at intervals on planes parallel to the zero alumina, zero lime, and zero magnesia faces of the tetrahedron, the apices of which represent 100% of each of the four oxides that make up the system.  相似文献   

9.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

10.
SiO2, Al2O3, and 3Al2O3.2SiO2 powders were synthesized by combustion of SiCl4 or/and AlCl3 using a counterflow diffusion flame. The SiO2 and Al2O3 powders produced under various operation conditions were all amorphous and the particles were in the form of agglomerates of small particles (mostly 20 to 30 nm in diameter). The 3Al2O3.2SiO2 powder produced with a low-temperature flame was also amorphous and had a similar morphology. However, those produced with high-temperature flames had poorly crystallized mullite and spinel structure, and the particles, in addition to agglomerates of small particles (20 to 30 nm in diameter), contained larger, spherical particles 150 to 130 nm in diameter). Laser light scattering and extinction measurements of the particle size and number density distributions in the flame suggested that rapid fusion leading to the formation of the larger, spherical particles occurred in a specific region of the flame.  相似文献   

11.
The dissolution rates of silicon nitride (Si3N4) ceramics into CaOAl2O3SiO2 slags were investigated by using a rotating specimen method in the temperature range of 1773–1873 K. Dissolution rates in the present study increased as the revolution speed and temperature increased and decreased as the SiO2 content of the slags increased. The nitrogen content of the slags increased after the Si3N4 ceramics had been immersed into them. The slags contained two types of nitrogen ions—N3− and CN-—because a graphite crucible was used for the experiment. N3− ions were confirmed in all the slags that were used in the present work; the CN- content was much lower than that of the N3− ions, except in the slag without SiO2. Based on those results, Ficks law of diffusion was used to analyze the dissolution rates. The dissolution mechanism of the Si3N4 ceramics into CaO–Al2O3SiO2 slags has been discussed in this paper.  相似文献   

12.
By a combination of solid-state sintering and quenching experiments the validity of calcium hexaluminate as a stable phase and the extent of its primary field in the system CaO–Al2O3–SiO2 have been established. The size of the primary field is considerably reduced from that suggested by earlier work. The anorthite-corundum-calcium hexaluminate invariant point has been relocated at 28.0% CaO, 39.7% Al2O2, and 32.3% SiO2 and at 1405°± 5°C.  相似文献   

13.
Results are presented of a study of phase equilibria among crystalline and liquid phases in the quaternary system CaO–MgO-Al2O3–SiO2 at Al2O3 contents greater than 35%. Equilibrium diagrams shown are for the five triangular joins CaAl2Si2O3-Ca2Al2SiO7-MgAl2O4, Ca2Al2SiO7-MgAl2O4-Al2O3, CaAl2Si2O8-MgO-Al2O3, CaAl2Si2O8-Mg2SiO4-MgAl2O4, and CaAl2Si2O8-MgO-Mg2SiO4. The composition and nature of the four quaternary peritectic points and the relationships of univariant lines and primary phase volumes are discussed.  相似文献   

14.
The influence of the additive SO3 on the phase relationships in the quaternary system CaO-SiO2-Al2O3-Fe2O3 was investigated by observing the change of volume ratio of 3CaOSiO2 (C3S) to 2CaOSiO2 (C2S) + CaO (C) in the sintered material with the increase of SO3 content. The primary phase volume of C3S in the quaternary phase diagram shrank with the increase of SO3 and disappeared when the SO3 content exceeded 2.6 wt% in the sintered material. Changes in the peritectic reaction relationship between CaO (C), 2CaOSiO2 (C2S), 3CaOSiO2 (C3S), 3CaOAl2O3 (C3A), 4CaOAl2O3Fe2O3 (C4AF), and liquid were also observed and discussed.  相似文献   

15.
Gel-glasses of various compositions in the x ZrO2.(10 – x )SiO2system were fabricated by the sol–gel process. Precipitation due to the different reactivities between tetraethyl orthosilicate (TEOS) and zirconium(IV) n -propoxide has been eliminated through the use of 2-methoxyethanol as a chelating agent. Thermal treatment of these gels produced crystalline ZrO2particles. While monoclinic is the stable crystalline phase of zirconia at low temperatures, the metastable tetragonal phase is usually the first crystalline phase formed on heat treatment. However, stability of the tetragonal phase is low, and it transforms to the monoclinic phase on further heat treatment. In this study, it has been found that the transformation temperature increases as the SiO2content in the ZrO2–SiO2 binary oxide increases. The most significant results were from samples containing only 2 mol% SiO2, where the metastable tetragonal phase formed at low temperatures and remained stable over a broad temperature range. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to elucidate the structure of these binary oxides as a function of temperature.  相似文献   

16.
The phase stability in part of the P2O5-bearing pseudoquaternary system CaO–SiO2–Al2O3–Fe2O3 has been studied by electron probe microanalysis, optical microscopy, and powder X-ray diffractometry. At 1973–1653 K, the α-Ca2SiO4 solid solution [α-C2S(ss)] and melt coexisted in equilibrium, both chemical variations of which were determined as a function of temperature. The three phases of melt, calcium aluminoferrite solid solution (ferrite), and C2S(ss) coexisted at 1673–1598 K. On the basis of the chemical compositions of these phases, a melt-differentiation mechanism has been, for the first time, suggested to account for the crystallization behavior of Ca3Al2O6 solid solution [C3A(ss)]. When the α-C2S(ss) and melt were cooled from high temperatures, the melt would be induced to differentiate by the crystallization of ferrite. Because the local equilibrium would be continually attained between the rims of the precipitating ferrite and coexisting melt during further cooling, the melt would progressively become enriched in Al2O3 with respect to Fe2O3. The resulting ferrite crystals would show the zonal structure, with the Al/(Al+Fe) value steadily increasing up to 0.7 from the cores toward the rims. The C3A(ss) would eventually crystallize out of the differentiated melt between the zoned ferrite crystals in contact with their rims.  相似文献   

17.
Solid-state compatibility and melting relations of MgAl2O4 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching selected samples located in the 65 wt% MgAl2O4, plane followed by microstructural and energy dispersive X-ray analysis. A projection of the liquidus surface of the primary crystallization volume of MgAl2O4 was constructed from CaO, SiO2 and exceeding Al2O3, not involved in stoichiometric MgAl2O4 formation; those three amounts were recalculated to 100 wt%. The temperature and character of six invariant points, where four solids co-exist with a liquid phase, were defined. One maximum point was localized and the positions of the isotherms were tentatively established. The effect of CaO, SiO2, and Al2O3 impurities on the high temperature behavior of spinel materials was also discussed.  相似文献   

18.
Thermal barrier coatings (TBCs) are increasingly susceptible to degradation by molten calcium–magnesium alumino silicate (CMAS) deposits in advanced engines that operate at higher temperatures and in environments laden with siliceous debris. This paper investigates the thermochemical aspects of the degradation phenomena using a model CMAS composition and ZrO2–7.6%YO1.5 (7YSZ) grown by vapor deposition on alumina substrates. The changes in microstructure and chemistry are characterized after isothermal treatments of 4 h at 1200°–1400°C. It is found that CMAS rapidly penetrates the open structure of the coating as soon as melting occurs, whereupon the original 7YSZ dissolves in the CMAS and reprecipitates with a different morphology and composition that depends on the local melt chemistry. The attack is minimal in the bulk of the coating but severe near the surface and the interface with the substrate, which is also partially dissolved by the melt. The phase evolution is discussed in terms of available thermodynamic information.  相似文献   

19.
Equilibrium diagrams for the systems NiO-SiO2, NiO-Al2O3, NiAl2O4-SiO2, Ni2SiO4-NiAl2O4, and NiAl2O4-Al6Si2O13 were drawn from data obtained by quenching and direct observational techniques. The only intermediate compound in the binary system NiO-SiO2 is Ni2SiO4, which has the olivine structure. Unlike other olivines which melt congruently, nickel olivine has an upper temperature of stability (1545°C) and at temperatures between 1545° and 1650°C, NiO and SiO2 coexist in equilibrium. The only compound in the binary system NiO-Al2O3 is NiAl2O4, which has a spinel structure. The nickel aluminate spinel varies in composition from 50 to 35 mole % Al2O3 at 1800°C, and the stoichiometric NiAl2O4 composition has a melting point near 2110°C. Of the joins within the ternary system NiO-Al2O3-SiO2 which were studied, only Ni2SiO4-NiAl2O4 is not binary. In this join, crystals of NiO exist in equilibrium with liquid and a ternary assemblage of NiO + NiAl2O4+ liquid is stable to 1775°C. The decomposition temperature of Ni2SiO4 is decreased from 1545°C in the binary system to approximately 1490°C, presumably the result of solubility of NiAl2O4 in Ni2SiO4. The join NiAl2O4-SiO2 is binary in that the compositions of crystalline phases can be expressed in terms of the chosen components. The eutectic temperature in the system is 1495°C. The join NiAl2O4-Al6Si2O13 is binary for the same reasons and has a eutectic temperature at 1720°C. Using the data obtained in this study and those published for the well-known system Al2O3-SiO2, a liquidus surface diagram for the system NiO-Al2O3-SiO2 is proposed. Nickel olivine, even though it has an upper limit of stability in the binary system, has a primary field in the ternary system NiO-Al2O3-SiO2. This is the only refractory oxide system known to illustrate this so-called “typical case,” the governing principles of which have been clearly presented in discussions of phase equilibria.  相似文献   

20.
A morphous solids belonging to the systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3 were prepared by nitrate decomposition, introducing boron in the form of boric acid. Crystalline metastable solids with pseudotetragonal symmetry were obtained from thermal treatment at 850° to 900°C for the compositions Al6MexO(9+0.5 x ) ( x ≅ 1; Me = Na, K) and Al6- x B x O9 (1 x 3). The resultant solids were stable only within a difinite temperature range and transformed, with further treatment increases, into stable equilibrium phases. The structures of the metastable phases were examined by X-ray diffraction and Fourier transform infrared spectroscopy, and both analyses showed a mullite type of framework, inside of which the atomic coordinates were refined in the Pbam (no. 55) space group. The present results indicate that these silica-free mullite structures are stabilized by two different mechanisms: (1) interstitial occupation of bulky cations (Na+, K+) or (2) substitution of B for Al in some of the tetrahedral positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号