首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
添加锰矿低密度高强度陶粒支撑剂的制备及作用机制研究   总被引:1,自引:0,他引:1  
低密度高强度支撑剂的开发与应用不仅有利于非胶化压裂液的使用,尤其对提高低渗透油气藏的开发效率有显著作用。以铝矾土为主要原料,添加5%锰矿,在1350℃下无压烧结,制备高强度低密度陶粒支撑剂,并讨论了锰矿掺量及烧成温度对支撑剂诸性能的影响。根据支撑剂的显微结构和孔结构分析发现:掺入5%锰矿有利于生成均匀分布的直径为0.2~1μm棒状莫来石,棒晶发挥纤维或晶须的强韧化作用,显著提高了支撑剂的强度,抗破碎能力达到69MPa闭合压力下破碎率为4.1%;在烧结后期,棒晶的生长速度过快未能有效排除气孔,导致大量晶粒间闭气孔生成,有效降低了支撑剂的密度(体积密度为1.78g/cm^3,视密度为3.22g/cm^3)。  相似文献   

2.
高强度低密度陶粒支撑剂的制备及性能研究   总被引:4,自引:0,他引:4  
高强度低密度陶粒支撑剂的研制,不仅能够满足深井压裂的要求,而且有助于提高产层的导流能力.通过在基本配方中添加少量锰矿,制备了高强度低密度压裂支撑剂.结果表明:在同-煅烧温度下,锰矿掺量的增加,可有效降低支撑剂的显气孔率,从而减少了试样表面产生的裂纹源,有效提高抗破碎能力;当锰矿掺量为5wt%,煅烧温度超过1250℃时,锰离子加快了体积扩散,促进晶粒生长,形成大量闭气孔,视密度开始呈现下降趋势;锰矿的掺入使微观形貌发生变化,产生大量的棒状莫来石,起到增强增韧的作用.  相似文献   

3.
以陶粒的新原料-焦宝石为主要原料,白云石为熔剂性辅料利用陶瓷烧结工艺成功制备了粒径425~850 μm满足35 MPa闭合压力下使用的支撑剂.重点研究了助熔剂白云石的不同添加量对焦宝石陶粒支撑剂晶粒发育及性能的影响.利用SEM和XRD分别对含有不同添加量的白云石的陶粒支撑剂进行了显微形貌和物相结构的分析,并多次测试了陶粒支撑剂的体密、视密和破碎率,结果揭示了白云石的添加有助于促进棒状莫来石晶粒的发育,同时在保证破碎率低于9%的前提下具有降低陶粒支撑剂体密/视密的作用.  相似文献   

4.
柏雪  王玺堂 《耐火材料》2012,46(2):99-101,106
以二级铝矾土生料、黏土为原料,以锰矿粉和碳酸钙为烧结剂,制备了高强度陶粒支撑剂材料,并讨论了锰矿粉加入量(w)0、1.0%、3.0%、5.0%、7.0%和碳酸钙加入量(w)0.5%、1.0%、1.5%、2.0%以及热处理温度为1 280、1 320、1 360、1 400℃时对支撑剂材料性能的影响。结果表明:随锰矿粉加入量的增加,试样烧结致密度提高,强度增大,当锰矿粉加入量≥5.0%(w)时,试样的强度基本不变;在加入5.0%(w)锰矿粉基础上,添加碳酸钙,试样烧后强度随碳酸钙加入量的提高而提高;碳酸钙加入量为2.0%(w)时,试样的强度达到275 MPa;同时添加5.0%(w)锰矿粉和2.0%(w)碳酸钙的试样的较佳热处理温度为1 360℃。  相似文献   

5.
采用焦宝石、煤矸石为主要原料制备了低密度高强度陶粒支撑剂,研究了煤矸石加入量及烧结温度对陶粒支撑剂视密度及破碎率的影响,并利用XRD、SEM等手段对不同温度烧结的陶粒支撑剂的物相组成和微观形貌进行了分析。结果表明:煤矸石的加入促使支撑剂内部形成大量闭气孔,使得视密度和抗破碎能力均呈下降趋势。陶粒的主晶相为莫来石相和石英相,随着烧结温度的升高,材料中气孔被排除,致密化程度提高,有助于提高陶粒的抗破碎能力。在过高的烧成温度下,液相增多,会导致抗破碎能力下降。当煤矸石加入量为15 wt%,烧成温度为1410°C时,陶粒支撑剂的视密度为2.65 g/cm~3,69 MPa下的破碎率为7.9%,产品具有低密度、高强度、低成本的特点。  相似文献   

6.
以阳泉长青Ⅲ级铝矾土和砂土为原料,在1420~1540℃下烧结制备了莫来石/石英质经济型陶粒支撑剂,研究了烧结温度对莫来石/石英质经济型陶粒性能的影响,并与目前市场上的支撑剂进行了详细的对比,得出这是一种性能优于天然石英砂、成本低于人造陶粒支撑剂的一种经济型陶粒支撑剂;并采用XRD和SEM等手段对陶粒支撑剂的性能和物相形貌进行了表征和分析。结果表明:在1510℃下烧结制备的陶粒支撑剂体密度为1.39 g·cm-3,视密度为2.78 g·cm-3,35 MPa下的破碎率为5.54%;在该温度下,莫来石晶相已经发育完全,且石英颗粒填充在莫来石形成的网络空间结构中,烧结致密化程度较高。  相似文献   

7.
陶粒支撑剂废料,混合铝矾土粉、黏土为原料,采取逐步添加的方法研究了废料的加入量对支撑剂性能的影响。结果表明,其半成品体积密度增高,同一烧结温度下,成品体积密度也增高,破碎率增大,强度降低。  相似文献   

8.
以低成本的高岭土为主要原料,以ZnO作为添加剂,结合常压烧结技术,制备出低密度高强度的陶粒支撑剂。研究了ZnO的添加量、烧结温度对陶粒支撑剂性能的影响。采用树脂覆膜的方法进一步优化了陶粒支撑剂的性能,使其适用于更高要求的油气井。研究结果表明,当加入2%的ZnO并且烧结温度为1 300℃时,陶粒支撑剂的体积密度为1.42 g/cm~3,视密度为2.61 g/cm~3,35 MPa闭合压力下的破碎率为7.28%。当环氧树脂的用量为支撑剂的12%,固化剂的用量为环氧树脂的14%时,覆膜支撑剂的体积密度为1.32 g/cm~3,视密度为2.27 g/cm~3,69 MPa闭合压力下的破碎率仅为1.16%。  相似文献   

9.
以山西忻州高铝煤矸石为主要原料,碳粉为造孔剂,采用常压烧结法,制备出了密度较低的石油压裂支撑剂,但造孔作用使得支撑剂的强度变低.为了能够在降低支撑剂密度的同时保证强度,添加MgO作矿化剂来改善支撑剂的强度.通过分析检测表明:引入适量的氧化镁做矿化剂,可促进液相烧结,对抑制莫来石晶粒长大有利,改善了支撑剂强度.当碳粉添加量为10wt%,氧化镁添加量为2wt%,烧结温度为1350℃时,获得的支撑剂性样品能最佳,体密度仅为1.35 g/cm3,视密度为2.41 g/cm3,35 MPa下破碎率为4.58%.  相似文献   

10.
以高岭石质煤矸石为主要原料,V2O5为添加剂,于1400 ℃下制备了莫来石晶须增强的陶粒支撑剂,讨论了V2O5促进莫来石晶须生长机制及其添加量对支撑剂样品性能的影响.结果表明:随着V2O5的加入,支撑剂样品的主晶相莫来石逐渐生长形成莫来石晶须;当V2O5添加量为1wt%时,试样的性能最佳;体积密度1.25 g/cm3,视密度2.69 g/cm3,52 MPa闭合压力下的破碎率5.18%.  相似文献   

11.
以铝矾土和煤矸石为主要原料,通过调整二者质量比(1:1,2:3和3:7),经造粒成球、不同温度烧结制备得到陶粒支撑剂。结果表明:当煤矸石掺入量为60%(质量分数)、35 MPa闭合压力下,满足破碎率行业标准的烧结温度范围为1 250~1 450℃,在该温度区间内,随着烧结温度的升高,样品的结晶相转变为棒状莫来石相,形成一种致密的网状交联结构,进而提高了陶粒支撑剂的抗破碎能力;当烧结温度为1 450℃时,体积密度及视密度分别为1.49和2.76 g/cm~3,破碎率指标达到最低值3.0%,证实利用煤矸石替代铝矾土可以制备出用于煤层气井开采用的陶粒支撑剂。  相似文献   

12.
以二级铝矾土(65wt%Al2O3)和钾长石为原料,在添加不同含量的白云石的基础上制备了超低密高强的压裂支撑剂,并研究了白云石的添加量对烧成温度和石油压裂支撑剂性能的影响.结果表明:在原料中加入适量的钾长石,不仅可以降低烧结温度,同时还能降低压裂支撑剂的密度;添加白云石能有效降低支撑剂的烧结温度和破碎率,同时白云石和钾长石共同作用,促进了烧结致密化的进行,有利于棒状莫来石的生长发育,从而提高了支撑剂的强度.当白云石的添加量为2wt%,烧结温度为1330 ℃时,所制备的压裂支撑剂性能最优,其体密仅为1.30 g/cm3,52 MPa下的破碎率为4.51wt%.  相似文献   

13.
《应用化工》2022,(5):1179-1182
以低成本的高岭土为主要原料,以ZnO作为添加剂,结合常压烧结技术,制备出低密度高强度的陶粒支撑剂。研究了ZnO的添加量、烧结温度对陶粒支撑剂性能的影响。采用树脂覆膜的方法进一步优化了陶粒支撑剂的性能,使其适用于更高要求的油气井。研究结果表明,当加入2%的ZnO并且烧结温度为1 300℃时,陶粒支撑剂的体积密度为1.42 g/cm3,视密度为2.61 g/cm3,视密度为2.61 g/cm3,35 MPa闭合压力下的破碎率为7.28%。当环氧树脂的用量为支撑剂的12%,固化剂的用量为环氧树脂的14%时,覆膜支撑剂的体积密度为1.32 g/cm3,35 MPa闭合压力下的破碎率为7.28%。当环氧树脂的用量为支撑剂的12%,固化剂的用量为环氧树脂的14%时,覆膜支撑剂的体积密度为1.32 g/cm3,视密度为2.27 g/cm3,视密度为2.27 g/cm3,69 MPa闭合压力下的破碎率仅为1.16%。  相似文献   

14.
以铝矾土为原料,白云石为辅料,添加一定量的复合添加剂,经粉磨、成球和烧成,制备了性能优良的高强度低密度陶粒支撑剂,讨论了复合添加剂掺量及烧成温度对陶粒支撑剂材料性能的影响。结果表明,当白云石掺量为2%,复合添加剂的掺量为6%,烧成温度在1330℃时,制备出的陶粒支撑剂的视密度为2.61g/cm-3,体积密度为1.55g/cm-3,52MPa闭合压力下的破碎率为6.70%。  相似文献   

15.
为了制备密度小、高温性能优异的刚玉-莫来石多孔陶瓷,在以莫来石细粉、板状刚玉细粉、α-Al_2O_3微粉、SiO_2微粉为主要原料,硅溶胶和ρ-Al_2O_3为结合剂配制的浆料中,分别添加占浆料体积10%、30%和50%的聚苯乙烯泡沫球为造孔剂,采用振动浇注成型,在1 500℃烧后制备了刚玉-莫来石多孔陶瓷,并探究了聚苯乙烯泡沫球添加量对多孔陶瓷的性能、相组成以及显微结构的影响。结果表明:随着聚苯乙烯泡沫球造孔剂添加量的增加,试样的常温弯曲强度、常温压缩强度、高温抗折强度、容重、热导率均明显下降。聚苯乙烯泡沫球氧化后形成直径约为2 mm的气孔,同时基质中颗粒之间的部分烧结生成了大量的微气孔,且1 500℃热处理后试样中原位生成了大量的莫来石,使得试样在1 500℃热处理后膨胀;当聚苯乙烯泡沫球加入量为浆料总体积50%时,试样的显气孔率达到61%,1 400℃下的高温抗折强度高达2. 64 MPa,满足密度小、高温性能优异的要求。  相似文献   

16.
可燃性气体的开发以及固体废弃物的再利用是响应国家低碳清洁发展、能源战略转型的重要举措。本文采用煅烧处理的煤矸石作为添加剂制备陶瓷颗粒支撑剂,通过调控支撑剂的原料配比,获得力学性能较好的材料,提升材料支撑岩层裂隙的结构强度,实现煤层气的高效开采。结果表明,煅烧煤矸石组分的适量添加可有效提高陶粒支撑剂抗破碎强度,其中42 MPa闭合压力下破碎率最低为3.66%,52 MPa闭合压力下破碎率最低为7.97%。通过观察界面腐蚀后的陶粒支撑剂微观形貌以及分析结构中的元素成分比例,发现材料中α-Fe2O3的均匀分布促进支撑剂中玻璃相的产生,提升了陶粒基体的结构致密性;同时α-Fe2O3晶粒在形核长大的过程中,由于间隙填补作用产生的微观应力对材料结构起到再次强化的效果,显著提升陶粒支撑剂的力学性能以及抗破碎能力。  相似文献   

17.
页岩气储层具有低孔隙度、低渗透率特点,需要使用低密度支撑剂以降低压裂液中聚合物用量,减小对页岩气储层的伤害。优选出一种低密度桃壳作为基材,采用酚醛树脂浸泡和环氧树脂二次覆膜的方法,研制出一种低密度支撑剂。支撑剂密度为1.19 g/cm3;在60 MPa压力下,支撑剂的形变量和破碎率仅为6.80%和2.68%,具有较强的抗压能力;支撑剂能够悬浮在0.15%胍胶压裂液中,降低了所需稠化剂的加量;热重分析表明,该支撑剂承受温度为280℃,具有良好的热稳定性;扫描电镜分析表明,环氧树脂二次覆膜能够覆盖酚醛树脂固化产生的气孔,降低了支撑剂吸水率。  相似文献   

18.
为实现煤矸石资源化利用,以高岭土粉、煤矸石粉、滑石粉、氢氧化铝粉为主要原料,制备了莫来石晶须原位增强堇青石-莫来石多孔陶瓷。研究了煤矸石掺量(质量分数分别为0、9%、17%、26%、33%)和AlF3添加量(质量分数分别为0、1.5%、2.0%、2.5%、3.0%)对多孔陶瓷物相组成、显微结构和性能的影响。结果表明:1)当煤矸石掺量(w)≤17%、AlF3添加量(w)≤2.5%时,试样主要矿物组成为堇青石和莫来石。2)增加煤矸石掺量可明显提高试样的体积密度和耐压强度,但对保持显气孔率不利;增加AlF3添加量导致试样体积密度和耐压强度减小,但可提高显气孔率。3)随着煤矸石掺量和AlF3添加量的增加,莫来石晶须直径增加,长径比增加,呈四方柱状或针状。4)当煤矸石掺量(w)为17%,AlF3添加量(w)为2.5%时,经1 350℃保温2 h,可获得体积密度1.86 g·cm-3,显气孔率31.0%,耐压强度27.8 MPa的多孔陶瓷;其针状莫来石晶须形成互锁结构...  相似文献   

19.
本文以阳泉铝矾土和煤矸石为原料,长石为烧结助剂,制备了适用于煤层气水力压裂开采的陶粒支撑剂.利用SEM和XRD,表征了不同温度下烧结的陶粒支撑剂的显微结构及物相组成;研究了烧结温度对陶粒支撑剂材料的抗破碎率、密度的影响.结果表明:样品结晶相为莫来石,刚玉和方石英,并随着温度升高,莫来石相含量逐渐增多,且结晶度也越来越好,在1450℃时,二次莫来石仍未转化完成;随着烧结温度的升高,样品密度与呈先上升后下降的趋势,破碎率呈现先降低后升高的趋势.1300℃烧结下的样品性能最好,体积密度为1.40 g/cm3,35 MPa下破碎率为7.06%.  相似文献   

20.
在开采煤层气、页岩气等气藏资源过程中,陶粒支撑剂的产品性能尤为关键,合成密度小、强度高的支撑剂是实现气藏高产率的重要指标。本文在传统矾土系陶粒支撑剂的基础上,添加煤矸石(RCG)、羧甲基纤维素钠(CMC)和白云石(DOL)进行固相烧结,借助以上造孔剂多温区的热解作用以及高温液相快速填充机制改善支撑剂的基体孔隙分布特征,降低支撑剂的结构密度并提升基体强度。当掺入质量分数为15%RCG+1%CMC+1%DOL添加剂时,支撑剂表现出最佳的综合性能并满足气藏资源开采的参数要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号