首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
针对焦化废水二级生化处理工艺出水化学需氧量(COD)难以达标的问题,采用实际焦化废水,通过开展半连续实验室小试试验,对比研究了单独臭氧氧化、O_3/H_2O_2氧化和UV-Fenton氧化3种工艺深度处理焦化废水的效果,并对不同工艺出水的UV_(254)、BOD_5/COD、发光细菌毒性、三维荧光光谱进行分析,研究不同高级氧化工艺对出水水质的影响规律。结果表明:增加臭氧投加量和添加H_2O_2能显著提高焦化废水二级生化工艺出水中有机物的去除效果。进水COD为(200±10)mg/L、O_3投加量为30 mg/L时,反应120 min后单独臭氧氧化对COD的去除率仅为36%;而对于UV-Fenton氧化,进水COD为(200±10)mg/L、H_2O_2(30%)投加浓度为2 g/L、Fe~(2+)与H_2O_2摩尔比为1∶10时,COD的去除率为50%;单独臭氧氧化和UV-Fenton均不能满足排放标准。进水COD为(200±10)mg/L、O_3投加量为30 mg/L、H_2O_2(30%)投加浓度为2 g/L,反应120 min后COD去除率达到63%,O_3/H_2O_2氧化工艺出水COD达到74 mg/L,满足GB 16171—2012《炼焦化学工业污染物排放标准》的要求。3种工艺中,O_3/H_2O_2氧化的COD去除效果最好,这主要归因于O_3和H_2O_2协同产生强氧化性自由基,但当H_2O_2浓度过高时,体系中产生的·OH反而与H_2O_2反应,从而导致O_3/H_2O_2体系的氧化能力下降。3种工艺都能有效降低出水毒性,出水发光细菌急性毒性试验显示,单独O_3氧化、O_3/H_2O_2氧化处理15 min后,相对发光度分别上升到90%和87%,UV-Fenton氧化处理30 min后,出水的相对发光度上升到71.57%。与单独臭氧氧化和O_3/H_2O_2氧化工艺相比,UV-Fenton工艺处理出水急性毒性相对较高,可能与臭氧的消毒作用有关。3种工艺对废水可生化性的提高程度不明显,BOD_5/COD从0.02最大提升到0.1左右。UV_(254)和三维荧光光谱的对比分析表明,3种工艺对出水中芳香族化合物和荧光物质具有明显的分解作用。单独O_3氧化可优先降解废水中腐植酸类物质中的共轭双键结构,而O_3/H_2O_2氧化工艺对环状共轭污染物的氧化效果更显著。随着UV-Fenton氧化处理,焦化废水中大分子的类腐植酸以及紫外区类富里酸优先被氧化降解,最终转化为可见区类富里酸和类蛋白质,而类蛋白质和可见区类富里酸物质在出水中仍存在较高浓度,UV-Fenton氧化工艺对荧光物质去除能力最差。  相似文献   

2.
采用投加助凝剂(PAM)、臭氧、粉末活性炭三种强化混凝沉淀工艺处理污水处理厂尾水,通过监测分析尾水处理前后的水质变化,研究助凝剂、臭氧、粉末活性炭对混凝沉淀工艺的强化效果。研究结果表明,混凝剂和助凝剂投加量比值为100:1时,COD_(Cr)、TP和浊度的去除效果明显提高,其中COD_(Cr)去除率比不投加助凝剂时提高将近15%。臭氧预氧化可以明显提高色度、氨氮、UV_(254)等指标的混凝去除效果,当投加5 mg/L的臭氧时,色度、UV_(254)的去除率比不投加臭氧时分别提升26.21%、17.89%。粉末活性炭不宜与混凝剂同时投加,混凝前30~60 min投加适量粉末活性炭(10~20 mg/L),可强化COD_(Cr)、TP和浊度的去除效果。  相似文献   

3.
为选择出一种适宜松花江水源水生物强化的活性炭,利用3种活性炭(XYK、YM和GAC15)构建了生物增强活性炭(BEAC)和普通生物活性炭(BAC)工艺体系。以经过常规处理后的松花江水为进水,研究了活性炭类型对BEAC和BAC工艺去除有机污染物效能的影响、停留时间和臭氧含量对工艺的影响以及活性炭类型对功能菌生物量及生物活性的影响。结果表明,富含中孔的新型炭(XYK)净水效能最优,更适宜生物强化,启动期间B-XYK对COD_(Mn)和UV_(254)的最大去除率分别为86.65%、93.00%。停留时间25 min、臭氧投加量2.5 mg/L时出水COD_(Mn)达最低,但其对去除UV_(254)的影响较小。  相似文献   

4.
《广东化工》2021,48(5)
采用连续流O_3-BAC组合工艺对某罐车清洗废水处理站MBR出水进行了中试处理实验,研究了O_3-BAC组合工艺对COD、UV_(254)和TOC处理效果的影响,探究了处理工艺对废水中有机物的变化影响,对BAC反应柱中的微生物种类进行了分析。结果表明,在臭氧投加浓度为20 mg/L,O_3反应停留时间40 min,BAC反应停留时间1 h,曝气量为0.5 L/min,反应初始pH为8,H2O2投加量为0.4‰,强化生化工艺停留时间12 h,回流量100%,反应级数为2级条件下,O_3-BAC工艺处理出水COD平均值为69.9 mg/L,平均去除率为79.5%,UV_(254)平均值为0.592 cm-1,平均去除率为86.5%。经GC-MS检测分析,经O_3催化氧化后有机物种类大幅减少,主要污染物酯类、胺类、酚类和含氮杂环化合物得到了明显去除。前段BAC单元主要菌门为Firmicutes、Proteobacteria和Chloroflexi,后段BAC单元主要菌门为Firmicutes。O_3-BAC组合工艺可以对罐车清洗废水MBR出水进行有效的深度处理。  相似文献   

5.
目前,抗生素在全世界范围内被广泛使用,将不可避免地导致抗生素对水体的污染。针对目前抗生素去除方法现状,介绍了利用臭氧高级氧化技术去除水体中抗生素的机理、特点等,重点介绍了O_3/H_2O_2、O_3/UV、O_3/金属氧化剂、O_3/活性炭等臭氧高级氧化技术在降解抗生素中的应用,并比较了几种技术的机理及优缺点,指出了臭氧高级氧化技术在深度处理水体抗生素应用中的潜力。  相似文献   

6.
对煤气化废水进行臭氧耦合过氧化氢氧化处理,考察n(O_3)∶n(H_2O_2)对处理效果的影响,得到最佳n(O_3):n(H_2O_2)=0.8。此时COD去除率可达40%左右,挥发酚的去除率可接近100%,UV_(254)的去除率可达80%左右,UV_(410)的去除率可达90%以上。反应后出水的BOD_5/COD达0.5以上,生物毒性由剧毒降低为低毒,提高了可生化性,满足后续生物处理的条件,经济成本约为9元/t。  相似文献   

7.
采用固相萃取-高效液相色谱法调查了淮南市某自来水厂原水、各处理工艺单元出水中4种邻苯二甲酸酯(DMP、DEP、DBP、BBP)。结果表明,4种邻苯二甲酸酯在原水中均检出,质量浓度为0.010~0.142μg/L;DMP和DEP仅在部分水样中检出,在管网水中没有检出;DBP和BBP在各水样中均检出,质量浓度分别为1.702~2.897μg/L、0.248~0.676μg/L,说明现行常规净水处理工艺不能完全去除邻苯二甲酸酯,需要进行深度处理。研究采用臭氧氧化技术、活性炭吸附技术和臭氧-活性炭技术对该水厂原水中的2种邻苯二甲酸酯(DBP、BBP)去除情况进行验证。结果表明,臭氧氧化技术不能完全去除原水中的DBP和BBP,去除率为61%~65%;活性炭吸附技术能够完全去除原水中的DBP和BBP;臭氧-活性炭技术对原水中的DBP和BBP去除率达到100%。该技术可以作为水厂深度处理工艺去除DBP和BBP的主要单元。  相似文献   

8.
通过搭建具有新型工艺"臭氧预处理+常规工艺+臭氧生物活性炭处理(臭氧-BAC)"的中试装置,考察了其对北太湖原水中有机物和消毒副产物前体物的去除效果。结果表明:整套工艺能够有效降低各类有机物浓度,对COD_(Mn)、DOC、UV_(254)和三卤甲烷生成潜能(THMFP)的去除率分别达到63.8%、42.1%、72.3%以及33.4%,其中COD_(Mn)的出水浓度为1.39 mg/L,出水中THMFP的浓度为316.1μg/L;对有机物和三卤甲烷(THMs)前体物去除效果最显著的是混凝沉淀阶段,其中对UV_(254)的去除效果最明显,去除率达到59.1%,UV_(254)能够间接表征水体中的THMFP含量;水中的余氯能够持续与有机物反应生成消毒副产物,因此三卤甲烷初始值(THM_0)与水中余氯含量的变化具有较大的相关性;臭氧-BAC阶段THMFP浓度升高了13.0%。  相似文献   

9.
《生活饮用水卫生标准》(GB 5749—2022)新国标的颁布实施对饮用水高效净化提出了新的挑战。现状常规与深度处理工艺对新污染物去除能力有限,紫外/过氧化氢-生物活性炭(UV/H2O2-BAC)组合工艺是一种可行的饮用水深度处理技术。文中提出了UV/H2O2-BAC工艺组成、设计要点,并与O3-BAC工艺进行技术经济对比分析,结合UV高级氧化技术中试研究结果及实际工程应用案例,总结评估了UV高级氧化深度处理工艺的运行效果及运行管理要求,以期为水厂深度工艺选择提供可行的工程技术方案。  相似文献   

10.
重点介绍了饮用水中有机磷农药的去除技术的研究进展,包括:常规处理工艺、臭氧/活性炭深度处理工艺、高级氧化工艺对有机磷农药的去除效果及去除机制。常规饮用水处理工艺不能安全有效地去除有机磷农药;作为常规处理工艺补充,臭氧/活性炭深度处理工艺、高级氧化工艺是目前的研究热点。但这两种工艺过程中机磷农药降解形成的高毒中间产物(P=O结构)生成和降解机制研究明显不足,同时也未对其提出有效的控制方法。今后的研究应当更多的关注于饮用水中有机磷农药去除技术的安全性。  相似文献   

11.
饮用水深度处理工艺的对比研究   总被引:1,自引:0,他引:1  
通过三种饮用水深度处理工艺的对比试验研究了不同工艺对同一源水的处理效果,从而提出较优的运行方案。结果表明:当原水的CODMn≥3.76mg/L时,为了确保最终出水符合《饮用净水水质标准》(CJ94-1999)的要求,采用两级臭氧氧化的臭氧生物活性炭的方式运行,其它情况下,从经济的角度建议按只投加预臭氧的方式运行。  相似文献   

12.
对高锰酸盐(PM)、高铁酸盐(Fe(VI))和臭氧(O_3)3种氧化剂预处理对饮用水中浊度、溶解性有机碳(DOC)、UV_(254)和溴离子(Br~-)、三卤甲烷(THMs)、卤乙酸(HAAs)含量的影响进行了研究。结果表明,3种预氧化均能在一定程度上提高浊度、DOC、UV_(254)、Br~-的去除效果。其中O_3预氧化取得最好的去除效果,Fe(VI)次之。虽然PM预氧化能在一定程度上提高去除效果,但其去除效果不明显。混凝-沉淀-过滤处理基本不能去除Br~-,滤后出水中ρ(Br~-)/ρ(DOC)升高导致消毒后溴代THMs和HAAs含量升高。预氧化处理导致Br~-含量降低,可以减少溴代THMs和HAAs的比例,同时也能减少总的THMs和HAAs含量。因此预氧化处理可以降低消毒出水中与DBPs相关的毒性。  相似文献   

13.
以大同煤为主要原料,通过配煤,采用物理活化法制备中孔活性炭。采用氮气吸附法测定了活性炭的吸附脱附等温线,并对其孔隙结构进行了表征。使用臭氧-生物活性炭工艺(O3/BAC)处理微污染水体,利用扫描电镜观察了微生物在炭表面的生长情况。试验结果表明,挂膜期间O_3/BAC工艺对水中的COD_(Mn)、TOC、UV_(254)及氨氮具有良好的去除效果,去除率分别达到73.4%~84.9%、70.5%~86.1%、87.1%~92.5%和63.8%~88.2%。通过扫描电镜观察,运行后期的炭样表面生长了大量的微生物及代谢产物,并出现了比较致密的菌胶团,表明活性炭挂膜成功。本文旨在为中孔压块活性炭的制备及其在微污染水处理领域的应用提供参考。  相似文献   

14.
探讨4种不同预处理工艺与超滤膜技术组合工艺(工艺1:原水+预臭氧+超滤;工艺2:原水+预臭氧+混凝沉淀+超滤;工艺3:原水+预臭氧+混凝沉淀+砂滤+超滤;工艺4:原水+预臭氧+混凝沉淀+砂滤+后臭氧+活性炭+超滤)对微生物的去除贡献。试验表明:四种组合工艺对浊度的去除率均达到99.5%以上,出水浊度低于0.1 NTU;工艺4出水的DOC、COD_(Mn)和UV_(254)含量分别为2.747、1.73 mg/L和0.013 cm~(-1),对DOC、COD_(Mn)和UV_(254)的去除率最大分别为32.77%、58.81%和77.97%;工艺4出水的AOC含量为88.59μg乙酸碳/L,出水BDOC含量为0.189 mg/L,对BDOC去除率最大。综合评价4种工艺出水水质化学指标和生物稳定性指标,选择工艺4(原水+预臭氧+混凝沉淀+砂滤+后臭氧+活性炭+超滤)组合工艺,效果最好,研究成果可为保障给水厂出厂水和管网水质生物稳定性提供理论参考。  相似文献   

15.
介绍某水厂采用"臭氧-生物活性炭-砂滤"深度处理组合工艺处理引黄水库水,考察了不同进水浑浊度对组合工艺长期运行效果的影响,同时对组合工艺各单元的有机物种类及分子量分布的变化进行了分析。长期运行结果表明:(1)组合工艺对不同水质条件下的有机物指标有较高的去除效果,较高的温度有利于水中有机污染物的去除。(2)臭氧的主要作用在于将大分子量的有机物氧化为小分子量有机物,故臭氧生物活性炭工艺对COD_(Mn)2、UV_(254)和DOC有良好的去除作用。整个工艺对氨氮的去除率在40%~50%,对亚硝酸盐氮的去除率在80%~90%。(3)臭氧活性炭工艺对可生物降解有机物有较好的去除效果,砂滤工艺主要去除D0CDA。(4)上向流BAC柱活性炭颗粒间空隙率较大,降低了对浊度的机械截留,其后置的砂滤池可起到稳定出水浊度,保证出水微生物安全性的作用。  相似文献   

16.
《应用化工》2022,(9):2121-2124
以焦化废水为研究对象,通过研究Fenton氧化法和电化学耦合铁氧化法对焦化废水的降解效果,对比这两种工艺的运行效能。在两种工艺的最佳条件下,对焦化废水的处理效果进行对比实验。Fenton工艺中,在pH为3.5,H_2O_2与Fe(2+)的浓度比为3∶1,反应30 min,H_2O_2的浓度为1.4 g/L的条件下对厌氧池中的废水进行降解,COD和UV_(254)的去除效果分别为48%和34.7%;而在电化学耦合铁板氧化工艺中,在不调节pH,电解30 min,电流密度为30 mA/cm(2+)的浓度比为3∶1,反应30 min,H_2O_2的浓度为1.4 g/L的条件下对厌氧池中的废水进行降解,COD和UV_(254)的去除效果分别为48%和34.7%;而在电化学耦合铁板氧化工艺中,在不调节pH,电解30 min,电流密度为30 mA/cm2,过硫酸盐浓度为6 mmol/L时,COD和UV_(254)的去除效果分别为66%和69%。电化学耦合铁氧化对焦化废水的运行效果明显优于Fenton氧化法,在两种高级氧化法中,起主要作用的是羟基自由基(·OH)和硫酸根自由基(SO■·),由于SO■·的稳定性要强于·OH,所以·OH与有机物氧化效果不如SO■·效果好。在电化学耦合铁体系中,铁的絮凝物(Fe(OH)_2、Fe(OH)_3)对有机物也有相应的降解效果,可以去除浊度和色度。因此,电化学耦合铁体系对焦化废水的运行效果要明显优于Fenton氧化法。  相似文献   

17.
针对平原水库夏季有机物及氨氮含量高的问题进行了研究。采用滤前曝臭氧的方式,改变上层滤料的类型,对比3种滤池对水中有机物及氨氮的去除效果。结果表明,在臭氧处理前水的pH为6.84~7.32,COD_(Mn)为6.1~7.3mg/L、UV254为0.162~0.194 cm~(-1)、NH_3-N的质量浓度为1.5~2.0 mg/L的条件下,臭氧-煤砂滤池对水中COD_(Mn)、UV_(254)及NH_3-N的去除率分别为60.5%、87.3%和73.2%,臭氧-活性无烟煤-砂滤池对水中COD_(Mn)、UV_(254)及NH_3-N的去除率分别为81.3%、93.4%和88.3%,臭氧-炭砂滤池对水中COD_(Mn)、UV_(254)及NH_3-N的去除率分别为84.5%、95.2%和92.2%。3种滤池对浊度的去除率达到93%以上。相比传统煤砂滤池,采用臭氧与活性滤料联用能够提高滤池的生化性能,对季节性高有机物、高氨氮含量原水有较好的处理效果。  相似文献   

18.
混凝-活性炭-过氧化氢组合工艺处理垃圾渗滤液研究   总被引:2,自引:0,他引:2  
用混凝-活性碳-过氧化氢组合工艺处理垃圾渗滤液,探讨了不同处理技术的最佳工艺条件和处理效果.结果表明,pH为4.0、投加200 mg·L~(-1)氯化铁、慢速搅拌25 min、静置60 min时混凝效果最好;而后在室温、pH=3.0、H_2O_2(质量分数为30%)投加量为5mL·L~(-1)、活性碳与H_2O_2的质量比为1:2、反应120min时,COD去除率最好.经混凝-活性炭-H_2O_2组合工艺处理后,垃圾渗滤液中COD、UV_(254)、UV_(410)和UV_(436)的去除率分别能达到89.44%,82.13%,90.625%和91.35%,其中出水中COD为75.69 mg·L~(-1),达到GB 16889-2008中污染物的排放限值.  相似文献   

19.
以焦化废水为研究对象,通过研究Fenton氧化法和电化学耦合铁氧化法对焦化废水的降解效果,对比这两种工艺的运行效能。在两种工艺的最佳条件下,对焦化废水的处理效果进行对比实验。Fenton工艺中,在pH为3.5,H_2O_2与Fe~(2+)的浓度比为3∶1,反应30 min,H_2O_2的浓度为1.4 g/L的条件下对厌氧池中的废水进行降解,COD和UV_(254)的去除效果分别为48%和34.7%;而在电化学耦合铁板氧化工艺中,在不调节pH,电解30 min,电流密度为30 mA/cm~2,过硫酸盐浓度为6 mmol/L时,COD和UV_(254)的去除效果分别为66%和69%。电化学耦合铁氧化对焦化废水的运行效果明显优于Fenton氧化法,在两种高级氧化法中,起主要作用的是羟基自由基(·OH)和硫酸根自由基(SO■·),由于SO■·的稳定性要强于·OH,所以·OH与有机物氧化效果不如SO■·效果好。在电化学耦合铁体系中,铁的絮凝物(Fe(OH)_2、Fe(OH)_3)对有机物也有相应的降解效果,可以去除浊度和色度。因此,电化学耦合铁体系对焦化废水的运行效果要明显优于Fenton氧化法。  相似文献   

20.
药物和个人护理品(PPCPs)中的医药品具有生物毒性大、环境风险高、难生物降解等特点。常规的污水处理工艺、饮用水处理工艺对水中痕量的医药品类污染物的降解都极其有限。高级氧化技术(AOPs)能够有效降解水体中的医药品类污染物,且降解后其生化性显著提高。阐述了目前水中医药品的污染现状以及臭氧氧化法、UV/H_2O_2法、Fenton法、UV/S_2O_8~(2-)法、UV/TiO_2法以及高锰和高铁氧化法等高级氧化技术降解医药品类污染物的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号