首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油藏数值模拟和很多其他科学计算问题一样需要求解大型稀疏线性代数方程组.在求解稀疏线性代数方程组的迭代法中,稀疏矩阵向量乘法(SpMV)是影响计算效率的核心函数之一.随着计算机硬件架构异构化,科学计算从单核、多核CPU计算架构逐渐发展到多核CPU+众核加速卡(GPU卡或MIC等)的计算架构.SpMV的实现效率与稀疏矩阵的存储格式及硬件架构关系密切.本文针对油藏模拟中常见的Jacobian矩阵的稀疏模式,利用GPU核心的合并访问和并发计算等特点,结合油藏模拟线性解法器的算法要求,设计了一种BHYB矩阵存储格式及其对应的线程组并行策略.数值实验测得基于该存储格式的SpMV相对串行BCSR格式的SpMV的加速比可达19倍,比cuSPARSE库中效率最高的HYB格式的SpMV快30%到80%.此外,本文所提出的BHYB存储格式对块状矩阵在GPU上的存储以及线程组并行策略对其它GPU并行程序中内核函数的设计和优化能起到一定的借鉴作用.  相似文献   

2.
磁流体动力学方程组被广泛应用于受控核聚变装置托卡马克、天体物理、磁流体发电等问题的研究中,其往往具有非线性、多尺度、多物理等特征,大规模数值难度较大.目前国际上对不可压缩流体问题的大规模数值求解主要采用全隐或半隐方法,但都是在同构的超级计算机而不是目前主流的异构众核系统上进行计算.论文面向国产神威"太湖之光"超级计算机,开展面向磁流体动力学方程组的异构众核全隐求解器研究.针对Newton-Krylov这类全隐求解器,提出了面向申威26010众核处理器的异构众核并行算法,并对其核心函数开展了众核并行和优化.对核心函数稀疏矩阵向量乘采用Matrix Free的方法来提升性能,对稀疏三角求解采用基于几何信息的异构众核并行算法,针对其访存密集的特点提出了存储格式、数据读取与计算依赖分离、核间寄存器通信等多种优化方法,对非线性残差计算等stencil类计算及10多个向量函数进行了异构众核并行,该异构众核并行算法可被其它应用软件重用.论文采用二维磁场重联问题进行测试,实验结果表明16进程时加速比可达13.6倍,能够支持高分辨率长时间模拟,并准确捕捉磁场重联现象.另外整体并行扩展性已经达到53万核,强可扩展性并行效率达到了33.8%,弱可扩展性并行效率达到了80.7%.  相似文献   

3.
刘芳芳  杨超  袁欣辉  吴长茂  敖玉龙 《软件学报》2018,29(12):3921-3932
世界首台峰值性能超过100P的超级计算机——神威太湖之光已经研制完成,该超级计算机采用了国产申威异构众核处理器,该处理器不同于现有的纯CPU,CPU-MIC,CPU-GPU架构,采用了主-从核架构,单处理器峰值计算能力为3TFlops/s,访存带宽为130GB/s.稀疏矩阵向量乘SpMV(sparse matrix-vector multiplication)是科学与工程计算中的一个非常重要的核心函数,众所周知,其是带宽受限型的,且存在间接访存操作.国产申威处理器给稀疏矩阵向量乘的高效实现带来了很大的挑战.针对申威处理器提出了一种CSR格式SpMV操作的通用异构众核并行算法,该算法从任务划分、LDM空间划分方面进行精细设计,提出了一套动静态buffer的缓存机制以提升向量x的访存命中率,提出了一套动静态的任务调度方法以实现负载均衡.另外还分析了该算法中影响SpMV性能的几个关键因素,并开展了自适应优化,进一步提升了性能.采用Matrix Market矩阵集中具有代表性的16个稀疏矩阵进行了测试,相比主核版最高有10倍左右的加速,平均加速比为6.51.通过采用主核版CSR格式SpMV的访存量进行分析,测试矩阵最高可达该处理器实测带宽的86%,平均可达到47%.  相似文献   

4.
有限差分算法是一种基于偏微分方程的数值离散方法,被广泛应用于弹性波传播问题的数值模拟中。该算法访存跨度大、计算密度高、CPU利用率低,这在实际应用中成为了性能瓶颈。针对上述问题,在详析3D有限差分算法(3DFD)的基础上,基于Intel MIC架构,采用三步递进法对其进行优化:首先,通过分支消除、循环展开、不变量外提等基本优化法削减计算强度并为向量化扫除障碍;然后,通过分析数据依赖及循环分块,使用向量指令集改写核心算法等并行优化法,充分利用MIC协处理器多线程、长向量的机制;最后,在异构众核平台(CPU+MIC:Many Integra-ted Cores)下通过数据传输最小化、负载均衡等异构协同优化法实现CPU和MIC的并行计算。实验验证,与原有算法相比,优化后的算法在异构平台上获得了50~120倍的加速。  相似文献   

5.
一种面向异构众核处理器的并行编译框架   总被引:1,自引:0,他引:1  
异构众核处理器是面向高性能计算领域处理器发展的重要趋势,但其更为复杂的体系结构使得编程难的问题更加突出.针对这一问题,基于开源编译器Open64,提出了一种面向异构众核处理器的并行编译框架,将程序自动转换为异构并行程序.该框架主要包括4个模块:任务划分模块用来识别适合进行加速计算的程序段,实现了嵌套循环的多维并行识别方法;数据布局模块完成数据在主存和SPM之间的布局,实现了数组边界分析和指针范围分析;传输优化模块实现了数据传输合并、传输外提、打包传输、数组转置等多种数据传输优化方法;收益评估模块在构建代价模型的基础上实现了一种动静结合的收益评估方法.并且,基于SW26010处理器,对该编译框架进行了实现,测试结果表明,该编译框架能够实现一些程序以面向异构众核结构的并行变换,且获得较好的加速效果.  相似文献   

6.
在众核处理器应用中,主要难点在于异构并行应用模式和负载均衡的策略,对于计算流体力学,需要针对相关应用设计相应的方案。我们针对湍流直接数值模拟中串行程序含有部分并行度较高的子程序或函数的特点,设计了一种新的并行计算模式,给出了一种异构平台优化方案,并在中科院超级计算系统"元"上进行了测试和分析,对领域内的典型算例进行了性能测试,着重讨论了不同规模下采用offload模式的CPU和MIC异构并行的扩展性能。  相似文献   

7.
寇大治  孔大力 《计算机科学》2015,42(11):56-58, 62
基于英特尔集成众核(Many Integrated Core,MIC)架构,将有限元网格积分算法在至强融核(Xeon Phi)协处理器做了移植和性能分析。该应用全面测试了有限元分析的核心计算过程在MIC上的加速效果,实现了卸载模式(offload)[1]下利用OpenMP在MIC上的线程并行化。计算性能测试结果显示集成众核平台可以有效地加速有限元网格积分算法:1)一块被充分利用的MIC设备卡(3115A)的计算能力超过两路16核Intel XeonTM E5-2670 CPU;2)MIC并发的物理线程可能由于公共缓存访问存在竞争而降低程序的扩展性。测试结果还显示了在多CPU多MIC平台上进一步移植完整的MPI并行有限元模拟软件的可行性。这项工作有助于推动与有限元网格相关的科学和工程高性能计算的研究。  相似文献   

8.
在当前主流的众核异构高性能计算机平台上开展超大规模计算流体力学(computational fluid dynamics ,CFD)应用的高效并行数值模拟仍然面临着一系列挑战性技术问题,也是该领域的热点研究问题之一.面向天河2高性能异构并行计算平台,针对高阶精度C FD流场数值模拟程序的高效并行进行了探索,重点讨论了C FD应用特点与众核异构高性能计算机平台特征相适应的性能优化策略,从任务分解、并行度挖掘、多线程优化、SIMD向量化、CPU与加速器协同优化等方面,提出一系列性能提升技术.通过在天河2高性能异构并行计算平台上进行了多个算例的数值模拟,模拟的最大C FD规模达到1228亿个网格点,共使用约59万C P U+M IC处理器核,测试结果表明移植优化后的程序性能提高2.6倍左右,且具有良好的可扩展性.  相似文献   

9.
针对多块结构重叠网格并行装配的问题,设计了支持初始网格系统细分的多块结构重叠网格框架,并在此框架基础上提出了基于局部洞映射的并行挖洞算法、格心网格下可跨块寻点的并行搜索算法,使之可适应大规模并行数值模拟时的分布式计算环境。此算法被模块化的集成到了自主研发的大规模多块结构网格数值求解器(CCFD-MGMB)中,可支持大规模并行非定常多体分离数值模拟。并行测试结果表明,本文发展的算法具有良好的局部数据结构组织,数据可扩展性强。数值应用模拟结果表明了该算法的有效性及正确性,千核并行非定常数值计算效率(相对于64核)可达58%。  相似文献   

10.
3D蒙特卡罗器件模拟计算量大,计算量随网格与粒子数增加而急剧增加。通过分析3D蒙卡模拟加速热点和进一步可并行性,研究有效电势方法的集成众核并行方案;研究粒子自由飞行、统计模拟信息、计算表面粗糙散射等热点并行方案,最终实现基于CPU/MIC的三级并行3D蒙特卡罗器件模拟软件。实验结果显示,三级并行比单级并行获得更好的性能;当提高模拟精度时,相比单级并行,三级并行蒙特卡罗模拟加速比增加。  相似文献   

11.
针对真实感渲染光线追踪流程中光线和场景求交计算量大、渲染速度慢的问题,提出一种基于Intel集成众核架构的并行光线追踪加速方法.在场景预处理阶段,首先构建四分支场景加速结构,以适应于MIC的硬件架构.在光线追踪阶段,首先通过CPU主核控制光线追踪整体流程,该主核采用多线程调度优化策略,调度MIC从核进行光线和场景树的求交操作,实现CPU和MIC的异步数据传输,充分利用主从核的计算能力;在MIC从核的光线和场景树求交过程中提出一种并行求交算法,充分利用MIC宽SIMD处理单元,实现光线和场景树4个结点并行求交的向量化操作,以加速求交过程.实验结果表明,与CPU原生模式相比,文中方法在光线求交阶段可达到2~4倍的加速效果,整体光线追踪流程渲染速度亦得到显著提升.  相似文献   

12.
现代高能物理研究需要使用高能量的粒子加速器,加速器束流动力学模拟软件具有重要的实用意义. 介绍了一个3维基于MIC的异构直线加速器并行束流动力学模拟软件NEWBEAM-MIC的开发进展. 目的是使用最新的超级异构计算机提高束流动力学模拟软件的性能,更好地完成加速器的设计和优化工作. 这个软件模拟了DTL和SOLENOID加速器装置中粒子的运动过程. NEWBEAM-MIC是在NEWBEAM-CPU软件基础上,将粒子推进部分分配到MIC卡上运行,从而利用MIC多线程的优势使计算加速的. 通过实际测试,这个软件在天河二号上使用100 CPUs和100 MICs可以模拟109个粒子,其中DTL场力计算、SOLENOID场力计算和粒子推进三个部分均可以比仅使用100 CPUs的NEWBEAM软件有100倍以上的加速效果. 再考虑MIC卡上的多线程,对同样规模的粒子,使用100 CPUs 和 100 MICs,当MIC线程数开到最大(224)时,NEWBEAM-MIC可以比单线程串行计算方式加速10000倍以上. 这表明本文开发的基于MIC的异构软件可以很好地加速原有的CPU软件,发挥现有MIC异构超级计算机的潜在性能.  相似文献   

13.
耗散粒子动力学(DPD)模拟是一种重要的研究流体动力学特性的计算模拟方法,基于Intel MIC平台设计实现了面向大规模耗散粒子动力学模拟,充分结合了DPD模拟本身的特性和MIC平台的特征。对DPD模拟中的近邻列表构建和短程作用力关键代码实现了向量化优化,在CPU和MIC协处理器之间采用任务计算负载平衡机制,支持MPI进程内线程数量负载平衡控制。分别在原型程序上和LAMMPS集成中做了性能对比分析,实验结果显示了引入相关优化技术的有效性,为进一步研究面向MIC众核平台的分子动力学相关工作奠定了基础。  相似文献   

14.
众核处理器适应于加速高吞吐率的计算密集型应用,而密码算法需要进行大量的数学计算,特别需要使用高吞吐率的计算平台。提出了一种面向众核平台的粗粒度并行加速框架,该框架不考虑算法内部的运算过程,将数据以计算函数为单位分配到众核协处理器上执行。使用MIC众核协处理器,采用三级并行结构及任务分配机制,提升了高吞吐率密码算法处理的并行性。针对多种密码算法应用的实验结果表明,该框架可充分利用众核平台实现粗粒度并行的高吞吐率加解密处理。  相似文献   

15.
海量数据背景下传统GIS栅格数据空间分析计算效率已经不能满足快速计算的需求,为此以地形因子计算为例,分析并测试了基于共享内存模型的CPU多核并行模式与基于流处理器模型的GPU众核并行模式的计算性能,在此基础上详细实现了负载均衡的设备间任务划分,进行CPU与GPU异构混合的并行技术改良研究。实验结果表明,基于相同的单机硬件环境,与多核共享内存模型或众核流处理器的单一计算平台并行方案相比,CPU/GPU异构混合并行计算方法对于栅格数据分析具有更好的加速效果。  相似文献   

16.
针对多核CPU和众核加速器或协处理器异构平台的架构特征进行了研究,以MPI和OpenMP混合编程模型实现了N体问题BH算法的并行,采用了正交递归二分法(ORB)使进程之间负载均衡,并对程序进行了并行优化和MIC加速。优化和加速后的程序性能提升到原版本的3.4倍以上,其中MIC加速后性能提升到加速前的1.7倍。程序具有较好的扩展性,计算粒子规模达到上亿时,可扩展到32个节点共4480核心(640个CPU核心和3840个MIC核心)  相似文献   

17.
地震波的叠前时间偏移算法是构造复杂岩层成像最有效的方法之一。地震勘探进入海量数据时代,且叠前偏移算法是数据处理中最费时的环节,对叠前偏移算法做并行计算优化有着重要的研究意义。近年来,高性能并行计算开始进入异构、众核时代,以Intel新一代至强融核MIC(Xeon Phi)为例,新型众核处理器具有成本低、性能高等特点。从最经典的Kirchhoff叠前时间偏移(PKTM)算法出发,基于CPU+MIC异构平台,采用offload编程模式实现对PKTM算法的并行移植与性能优化,对于6 000万规模(8 000×8 000)的应用问题,总的并行模拟时间从357.52s减少到1.66s,性能提升了214.37倍。  相似文献   

18.
在大数据背景下,以K-Means为代表的聚类分析对于数据分析和挖掘十分重要。海量高维数据的处理给K-Means算法带来了性能方面的强烈需求。最新提出的众核体系结构MIC(many integrated core)能够为算法加速提供众核间线程级和核内指令级并行,使其成为K-Means算法加速的很好选择。在分析K-Means基本算法特点的基础上,分析了K-Means算法的瓶颈,提出了可利用数据并行的K-Means向量化算法,优化了向量化算法的数据布局方案。最后,基于CPU/MIC的异构架构实现了向量化K-Means算法,并且探索了MIC在非传统HPC(high performance computing)应用领域的优化策略。测试结果表明,K-Means向量化算法具有良好的计算性能和扩展性。  相似文献   

19.
为研究极端条件下金属材料的性质,在JASMIN 框架上研制了三维并行位错动力学程序PDD3D. 它集成了离散位错动力学模拟的物理方案和数值算法.通过设计实现高效的分布式数据结构、可扩展的快速多极子解法器以及基于影像区的拓扑操作通信方式,该程序具有较高的性能和较好的可扩展性.1024 个处理器上,对包含3 千万条位错线的物理模型的模拟结果显示,PDD3D 程序获得了81%的并行效率.  相似文献   

20.
圣维南方程组可用于描述明渠非恒定流的汇流过程,在大规模水文模拟软件中,求该方程组的数值解是制约程序运行时间的最大瓶颈。 通过分析串行程序结构及其计算热点,挖掘计算密集型程序中单步模拟循环计算段和指令排列等的可并行性,针对“神威·太湖之光”超级计算机的异构众核架构设计主从核异步并行方案,基于MPI和athread库对求解程序进行移植、并行和加速,采用SIMD技术将从核计算段向量化,使用双缓冲等策略对通信瓶颈进行优化。测试表明,计算热点函数的性能较优化前平均可提高3倍以上,在百万控制单元规模内,众核级优化后的并行程序加速比可保持近线性增长,在神威多结点上具有很好的可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号