首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirteen treatments to compare effects of dietary fat on milk yield and composition were control, 15% whole cottonseed, and 2 and 4% Ca-tallowate factorially distributed in low forage (35% corn silage DM) with 14 or 18% CP and high forage (66% corn silage) diets with an additional diet of 8% Ca-tallowate. Different treatments were fed to 36 cows in each of three 28-d periods. Feeding 2 and 4% Ca-tallowate improved milk yield with high forage, although DM intake was slightly depressed; compared with 4% Ca-tallowate, DM intake and milk yield were depressed by 8% Ca-tallowate. Across all diets, whole cottonseed depressed DM intake and milk yield more than when nearly equal fat came from Ca-tallowate (4%). Calcium-tallowate depressed milk fat percentage linearly. Milk fat from cows fed whole cottonseed or Ca-tallowate contained unsaturated fatty acids (mostly C18:1) and lesser quantities of short-chain fatty acids. In a subsequent experiment, Ca-tallowate depressed milk fat percentage, whereas Megalac (calcium salts of fatty acids from palm oil) did not. In a field study, one trial with 210 cows in midlactation showed no effect on milk yield and composition from .54 kg of Megalac/d for 60 d, nor was there any effect detected with 121 cows in early lactation from feeding of .45 kg of Megalac/d for 90 d.  相似文献   

2.
The objective was to determine the efficacy of a blend of ammonium salts of the volatile fatty acids, isobutyric, 2-methylbutyric, isovaleric, and valeric as a supplement to diets for dairy cows. Treatments of 0 (control) or 120 (supplemented) g/cow of the blend were fed daily from approximately 3 wk prepartum through a complete lactation. Five trials were conducted concurrently with a total of 116 multiparous Holstein cows. Dietary ingredients or combinations of ingredients differed in each of the trials. Diets contained either 1) corn gluten meal and urea, 2) soybean meal, or 3) cottonseed meal as the primary grain source of crude protein. The forage portion of the diets contained corn silage in combination with one or more of the following: alfalfa hay, alfalfa haylage, or wheat silage. Cows fed the supplement produced more milk and fat-corrected milk than the control cows for the 305-d lactation on four of the five diets, resulting in an average increase of 1.7 kg/d or 7%. Feed intake of cows on the supplemented diet was generally similar or lower than intake of the control cows throughout lactation, indicating that increased milk yield was associated with improved feed utilization. Percent milk fat was similar for cows on the supplemented diet, but fat yield was higher. Percent milk protein was lower for supplemented cows, but protein yield was about the same for both treatments because of higher milk yield. Health and reproduction were similar for all cows.  相似文献   

3.
Supplemental fat has been advocated for use during hot weather and often increases milk yield of cows past peak production when energy intake should not be limiting. Relative responses of primiparous and multiparous cows to supplemental fat or isocaloric addition of concentrates under hot weather conditions have not been determined. Nine multiparous and nine primiparous Holstein cows (154 and 167 d in milk, respectively) were used in a replicated 3 x 3 Latin square design with 28-d periods. Diets were 1) control (35% alfalfa silage, 25% corn silage, and 40% concentrate, dry matter [DM] basis); 2) control plus 3% fat (HF); and 3) high concentrate ([HC] 15% alfalfa silage, 25% corn silage, and 60% concentrate). Diets were isonitrogenous; diets HF and HC were isocaloric (1.60 Mcal of net energy for lactation [NE(L)] per kilogram DM) and higher energy than the control (1.52 Mcal/kg). No parity x diet interactions approached significance. DM intake (DMI) was greater when cows were fed HC than when they were fed HF (21.0, 20.1, and 21.3 kg/d for control, HF, and HC, respectively); intake of NE(L) tended to be increased only for HC. Milk yield was increased by higher-energy diets, but milk fat content was decreased. Milk total protein content was decreased by HF and increased by HC. Yield of solids-corrected milk (SCM) was not different among diets. Efficiency of milk production, expressed either as total milk solids yield per kilogram of DMI or as kilograms of SCM per megacalorie of NE(L) intake, was greater for HF than for HC. Plasma glucose was higher after feeding for cows fed HC; plasma nonesterified fatty acids were greater for HF. Respiration rate and rectal temperature were greater for HC than for HF. Regardless of parity, increased energy density from either fat or concentrate increased milk yield in midlactation cows, but diets caused energy to be partitioned differently among milk components and body storage. Supplemental rumen-active fat had modest advantages over additional starch-based concentrate during summer heat conditions.  相似文献   

4.
Forty-four lactating Holstein cows (173 ± 30 DIM, 42.5 ± 6.8 kg of milk, 4.03 ± 0.69% fat, 674 ± 78 kg of body weight) were used in an 8-wk, completely randomized trial with a 2 × 2 factorial arrangement of treatments to determine the effect of forage source and supplemental cellulase enzyme on performance. Treatments included 2 forage combinations (corn silage plus 12.2% dry matter, DM, from either alfalfa hay or Tifton 85 bermudagrass haylage) with or without a commercial cellulase enzyme applied to the total mixed ration at the rate of 4 g/head per day (Promote N.E.T.-L, Cargill Animal Nutrition, Minneapolis, MN). Experimental diets were formulated to provide similar concentrations of protein (16.5% of DM), energy (1.63 Mcal of net energy for lactation/kg of DM), and neutral detergent fiber (41.7% of DM) and were fed once daily as a total mixed ration behind Calan doors for ad libitum intake. The cellulase enzyme provided 1,200 cellulase units of activity/g of product and was applied to the total mixed ration and allowed to mix for 5 min before feeding. Before beginning the trial, all cows were trained to use Calan (American Calan, Northwood, NH) doors and then fed the alfalfa hay-based diet for 2 wk. Data collected during wk 2 were used as a covariate in the statistical analysis. At the beginning of the 6-wk experimental period, cows were assigned randomly to 1 of the 4 experimental diets. No interactions were observed between forage and enzyme for any measures. Daily DM intake; milk yield; concentrations of milk fat, true protein, lactose, and solids not fat; energy-corrected milk yield; and dairy efficiency were not different among alfalfa or Tifton 85 bermudagrass rations with or without cellulase enzyme supplementation. The results of this trial indicate that Tifton 85 bermudagrass haylage can replace alfalfa hay in diets fed to high-producing, lactating dairy cows without depressing DM intake or milk yield when rations are balanced for NDF. Although supplemental cellulase enzymes have been shown to improve ration digestibility and animal performance in previous trials, no advantages were observed in the current trial.  相似文献   

5.
Effects of chop length (shorter: 6 mm, or longer: 19 mm) of alfalfa silage and oat silage were determined in 16 mid-lactation Holstein cows, 4 of which were rumen cannulated, using a replicated 4 × 4 Latin square design with a 2 × 2 arrangement of treatments. Experimental periods were 21 d long and consisted of 14 d of adaptation and 7 d of sampling. Cows received a total mixed ration containing [dry matter (DM) basis] 42.0% barley grain-based energy supplement, 10% protein supplement, and 24% of DM longer chop or shorter chop alfalfa silage and 24% of DM longer chop or shorter chop oat silage. Rumen pH was measured continuously, and rumen liquid flow rates were determined in rumen-cannulated cows. Feeding behavior was determined by videotaping, and meal patterns were determined by continuously weighing the feed in the bunk of 8 cows. Reducing the chop length of alfalfa silage and oat silage reduced the average geometric particle length from 14.2 to 10.9 mm and from 13.4 to 10.4 mm, respectively. Reducing the alfalfa chop length did not affect feed intake, whereas reducing the oat silage chop length increased DM intake from to 19.4 to 21.2 kg/d. Reducing the chop lengths of alfalfa silage and oat silage chop length did not affect milk production, rumen fermentation, feeding behavior, meal patterns, and blood metabolites. Daily milk yield, milk fat percentage, and milk protein percentage averaged 36.1 kg/d, 3.00%, and 3.16%, respectively, across diets. The low milk fat percentages suggest that the diets induced subacute ruminal acidosis. This was also substantiated by the rumen pH, which was below 5.6 for more than 122 min/d for all diets. The onset of subacute ruminal acidosis despite apparently adequate dietary neutral detergent fiber content and particle size distribution as well as the long duration of chewing might be attributed to sorting against long feed particles.  相似文献   

6.
The objective was to determine whether crude glycerin could partially replace concentrate ingredients in corn silage- or cottonseed hull-based diets formulated to support minimal milk fat production without reducing milk production. Multiparous, lactating Holstein cows (n=24; 116 ± 13d in milk) were assigned to dietary treatments arranged in a 2 × 3 factorial design; namely, 2 dietary roughage sources (cottonseed hulls or corn silage) and 3 dietary concentrations of glycerin [0, 5, or 10% on a dry matter (DM) basis]. Four different cows received each dietary treatment in each of 3 periods such that each diet was evaluated using 12 cows. Crude glycerin, produced using soybean oil, contained 12% water, 5% oil, 6.8% sodium chloride, and 0.4% methanol. Glycerin partially replaced ground corn, corn gluten feed, and citrus pulp. Diets of minimum fiber concentrations were fed to lactating dairy cows and resulted in low concentrations of milk fat (averaging 3.12% for cows fed diets without glycerin). The effects of glycerin on cow performance and ruminal measurements were the same for both dietary roughage sources with the exception of feed efficiency. Replacing concentrate with crude glycerin at 5% of dietary DM increased DM intake without increasing milk yield. Concentration and yield of milk fat were reduced when glycerin was fed at 10% of dietary DM. This was accompanied by a 30% reduction in apparent total-tract digestion of dietary neutral detergent fiber. Crude glycerin affected the microbial population in the rumen as evidenced by increased molar proportions of propionic, butyric, and valeric acids and decreased molar proportions of acetic acid. Efficiency of N utilization was improved as evidenced by lower concentrations of blood urea nitrogen and ruminal ammonia-N. Cows fed cottonseed hull-based diets consumed 5.3 kg/d more DM but produced only 1.7 kg/d more milk, resulting in reduced efficiency. Increased production of ruminal microbial protein, molar proportion of propionic acid, and passage of ruminal fluid resulted from feeding the cottonseed hull- versus corn silage-based diets, although apparent digestibilities of DM and neutral detergent fiber were reduced. Replacing 5 and 10% of concentrate ingredients with crude glycerin improved efficiency of 4% fat-corrected milk production when corn silage-based diets were fed but decreased it when cottonseed hull-based diets were fed.  相似文献   

7.
The objective of this experiment was to assess if feeding glyphosate-tolerant alfalfa affects feed intake, milk composition, or milk production of dairy cows. One alfalfa (Medicago sativa), variety expressing the CP4 EPSPS protein and grown in southeastern Washington State was harvested at the late vegetative stage as hay. Three commercial conventional varieties of alfalfa hay of similar nutrient composition and harvested in the same geographic region were fed to cows as controls. The commercial hays were selected to be similar in crude protein [18% of dry matter (DM)] and neutral detergent fiber (40% of DM) to the glyphosate-tolerant hay. Sixteen multiparous Holstein cows were fed diets containing alfalfa hay (39.7% of diet DM) from either the glyphosate-tolerant alfalfa, or 1 of the 3 conventional varieties. Diets contained at least 15.7% crude protein and 29% neutral detergent fiber. Experimental design was a replicated 4 × 4 Latin square. Periods were 28 d and feed intake, milk yield, and milk composition were summarized over the last 14 d of each period. Daily milk yield (38.0 kg) and 4% fat-corrected milk (34.7 kg) were not affected by treatment. Milk fat (3.44%) and milk true protein (2.98%) were also not affected by source of hay. Milk lactose (4.72%) and soldis-not-fat (8.5%) did not differ due to treatment. Dry matter intake was similar across treatments (24.4 kg/d). These results are consistent with data from feeding trials with other glyphosate-tolerant crops and previously reported compositional comparisons of glyphosate-tolerant alfalfa with controls. Milk production, milk composition, feed intake, and feed efficiency were not affected by feeding diets that contained nearly 40% glyphosate-tolerant alfalfa hay to lactating dairy cows.  相似文献   

8.
Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.  相似文献   

9.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

10.
Twenty-four multiparous lactating Holstein cows were blocked by days in milk and assigned to treatment sequences in a replicated 4x4 Latin square with 21-d periods. The four diets, formulated from alfalfa silage plus a concentrate mix based on ground high moisture ear corn, contained [dry matter (DM) basis]: 1) 20% concentrate, 80% alfalfa silage (24% nonfiber carbohydrates; NFC), 2) 35% concentrate, 65% alfalfa silage (30% NFC), 3) 50% concentrate, 50% alfalfa silage (37% NFC), or 4) 65% concentrate, 35% alfalfa silage (43% NFC). Soybean meal and urea were added to make diets isonitrogenous with equal nonprotein N (43% of total N). Intake of DM and milk yield indicated that adaptation was complete within 7 d of changing the diets within the Latin square. There were linear increases in apparent digestibility of DM and organic matter, and a linear decrease in neutral detergent fiber (NDF) digestibility with increasing dietary NFC. Solutions of significant quadratic equations yielded estimated maxima for intake of DM, organic matter, digestible organic matter, and NDF at, respectively, 37, 38, 43, and 27% dietary NFC. There were linear increases in yields of milk, protein, lactose, and solids not fat with increasing dietary NFC. Feed efficiency (milk/DM intake) yielded a quadratic response with a minimum at 27% dietary NFC. Maxima for milk fat content, fat yield, and fat-corrected milk yield were estimated to occur at, respectively, 30, 34 and 38% dietary NFC. In this short-term trial, maximal DM intake and fat-corrected milk yield indicated that the optimum concentrate for cows fed high moisture ear corn plus alfalfa silage as the only forage was equivalent to 37 to 38% dietary NFC; however, yields of milk, protein and solids not fat were still increasing at 65% dietary concentrate (43% NFC).  相似文献   

11.
Twenty-four multiparous Holstein cows (124 ± 39 d in milk; 682 ± 72 kg of body weight) were used in 6 simultaneous 4 × 4 Latin squares to evaluate full-fat corn germ as a fat source for lactating dairy cows. Experimental diets were a control (containing 28% ground corn, 23% alfalfa hay, 19% wet corn gluten feed, and 10% corn silage, dry matter basis), and 3 diets with either whole cottonseed (WCS), tallow (TAL), or full-fat corn germ (FFCG) added to provide 1.6% supplemental fat. Cows were fed twice daily for ad libitum intake. Dry matter intake, milk yield, and energy-corrected milk did not differ among diets. Efficiency of milk production (energy-corrected milk/dry matter intake) was greater for cows fed WCS than for cows fed the control, TAL, or FFCG. Milk fat percentage from cows fed FFCG was less than that of cows fed WCS or the control, but was similar to that of cows fed TAL. Milk protein percentage was less for cows fed FFCG than for those fed the control. Total saturated fatty acids were less in milk from cows fed fat sources, and cows fed WCS and TAL had greater saturated fatty acids in milk than did cows fed FFCG. Unsaturated fatty acids were greater in milk from cows fed FFCG than in milk from cows fed the control, WCS, or TAL. The cis-9, trans-11 conjugated linoleic acid content was greater in milk from cows fed WCS, TAL, and FFCG than from cows fed the control, and it was greater in milk from cows fed FFCG than in milk from cows fed WCS or TAL. These results indicate that FFCG can be used effectively as a fat source in diets for lactating dairy cattle.  相似文献   

12.
Effects of canola fat on feed intake, yield, and composition of milk of early lactation dairy cows were investigated. Concentrate mixtures containing 0, 2.5, 5.0, 7.3, and 9.6% added fat as Jet-Sploded whole canola seed (0, 4.5, 9.0, 13.2, and 17.4% of DM, respectively) were fed to 15 cows in diets containing 60% concentrate and 40% forage (DM basis). Diets contained 16.5% CP, 30% alfalfa silage, and 10% whole crop oat silage (DM basis). There was a trend for a cubic effect on DMI, a quadratic effect on milk yield, and a small, but significant, linear decrease in milk protein percentage with increasing level of canola seed; the decrease was primarily in the casein fraction. Although milk fat percentage was not altered, addition of Jet-Sploded canola seed caused a substantial reduction in some short- and medium-chain fatty acids and a concomitant increase of as much as 65% in the concentration of C18:1. Results suggest that canola fat from Jet-Sploded whole canola seed can be included up to 5% of dietary DM without negative effects on DMI and with a net positive effect on milk yield.  相似文献   

13.
Forty-six multiparous Holstein cows were assigned 5 d postpartum to a completely randomized design employing a 2 x 3 factorial treatment arrangement. Factors were 0 or 5% added prilled fat (DM basis) substituted for shelled corn and alfalfa silage fed in forage-to-concentrate ratios of 45:55, 64:36, and 84:16 (DM basis). Interactions between fat and forage level were not observed for any of the parameters measured. Energy density, calculated using data from a digestibility trial, was similar between 45:55 and 64:36 diets (1.66 Mcal NE1/kg) and was lower with 84:16 diets (1.48 Mcal NE1/kg) for the 100 d trial. Fat supplementation increased energy density of the diets (1.67 vs. 1.53 Mcal NE1/kg). Dry matter digestibility, energy intake, and 4% FCM yields were similar for cows fed 45:55 and 64:36 diets and lower for those fed the 84:16 diets. Fat supplementation did not affect DM digestibility. Dry matter intake declined with increasing forage level and fat supplementation. Milk yield decreased as forage level increased. Fat supplementation did not affect yield of milk or FCM. Milk fat percentage was lower for cows fed 45:55 than 64:36 or 84:16 diets. Fat supplementation increased milk fat percentage. Milk protein yield decreased as forage level increased but was unaffected by fat supplementation. Results suggest higher levels of concentrate support higher milk yields, and prilled fat supplementation improves fat test when fed with immature forages. Prilled fat supplementation did not enhance lactation performance because of depressed DM intake in early lactation.  相似文献   

14.
To examine the effects of reducing forage particle size on production, chewing, and digesta kinetic parameters in early lactation, 42 Holstein cows (9 ruminally cannulated) were assigned 14 d postpartum to one of three experimental diets with concentrate: alfalfa haylage: alfalfa pellets ratio of A) 60:40:0;B) 60:28:12; and C) 60:12:28 on a DM basis. The trial ran through the 12th wk postpartum, and measurements of chewing activity and rumen parameters were made during the 4th, 8th, and 12th wk postpartum. Dry matter intake (kg/d), milk production (kg/d), and milk fat percentage for diets A, B, and C were 23.1, 23.0, 18.8; 33.7, 35.5, 31.8; and 3.1, 2.9, 2.6, respectively. Rumen parameters and chewing activities were linearly related to haylage in the diet. Ruminal fluid dilution rate (%/h), volume (L), and outflow (L/d), rumination (min/d), total chewing (min/d), total chewing (min/kg DM intake), ruminal acetate (molar %), and NDF digestibility (%) were 16.6, 13.8, 10.0; 62, 58, 54; 243, 193, 137; 437; 367, 204; 649, 566, 376; 28.2, 24.1, 20.0; 58.6, 56.3, 53.8; and 32, 37, 23, respectively. These results suggest that dairy cattle in early lactation require a minimum amount of effective fiber to optimize production and intake. This requirement was met when 28%, but not 12%, of dietary DM was alfalfa haylage.  相似文献   

15.
In a 2-yr study, 44 primiparous and 77 multiparous cows were assigned to one of 12 dietary treatments (2 X 3 X 2 factorial). Treatments were two forages (alfalfa or smooth bromegrass), three percentages of grain (40, 50 or 60% of diet DM), and two percentages of methionine hydroxy analog (0 or .15% of diet DM). Feeds were offered as total mixed diets. Data collection began 4 d postpartum and continued through 116 d postpartum. Dry matter intake was not affected by percentage of concentrate or forage source even though NDF of the diets ranged from 25.6 to 48.8% and ADF ranged from 15.7 to 36.8%. Cows fed bromegrass hay produced 1.5 kg/d more FCM and 1.2 kg/d more SCM than those fed alfalfa hay. Concentrate percentage in the diet increased milk yield (28.9, 30.4 and 31.3 kg/d at 40, 50 and 60%, respectively). Methionine hydroxy analog increased milk fat percentage and yield for cows fed diets of 50 and 60% concentrate with alfalfa hay but not for those fed diets of 50 and 60% concentrate with bromegrass hay. Effect of methionine hydroxy analog was not significant for milk fat or yield when diets of 40% concentrate were fed.  相似文献   

16.
A low NDF drought-stressed 1988 alfalfa silage (32.6% NDF) and a higher fiber 1988 alfalfa silage (46.4% NDF) were fed to lactating cows to evaluate effects on feed intake, fat test, and chewing behavior. Two groups of Holstein cows, 16 primiparous housed in tie stalls and 16 multiparous in free stalls, were assigned to diets based on parity and milk yield. The low NDF silage was fed for 6 wk in a TMR with 21.5% NDF and was compared with a TMR with 31.9% NDF. During an additional 4-wk period, one-half of each dietary group was fed a ration in which one-half of each silage was rechopped to reduce particle size. All rations contained a 1:1 ratio of forages to concentrates (DM basis) and were fed for ad libitum intake. Diets with 21.5% NDF and reduced particle size had no influence on milk fat percentage, 4% FCM yield, or plasma glucose. Cows fed these diets had reduced chewing time, due largely to decreased rumination time. Rumination and total chewing times per unit DMI and FCM also were lowest on these diets. Intake of DM on a BW basis was lowest for cows fed the low NDF rechopped silage diet. Cows fed in tie stalls had more eating bouts than those in free stalls, but total eating times were similar. Sufficient amounts of effective fiber appeared to be present in low NDF and rechopped silage diets to prevent the systemic events leading to milk fat depression but not to prevent a reduction in chewing time.  相似文献   

17.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

18.
Dietary medium-chain fatty acids (C(8:0) through C(12:0)) are researched for their potential to reduce enteric methane emissions and to increase N utilization efficiency in ruminants. We aimed to 1) compare coconut oil (CNO; ~60% medium-chain fatty acids) with a source of long-chain fatty acids (animal fat blend; AFB) on lactational responses in a high-starch diet and 2) determine the effect of different dietary concentrations of CNO on dry matter intake (DMI). In experiment 1, the control diet (CTRL) contained (dry basis) 40% forage (71% corn silage, and alfalfa hay and haylage), 26% NDF, and 35% starch. Isonitrogenous treatment diets contained 5.0% of AFB (5%-AFB), CNO (5%-CNO), or a 1-to-1 mixture of AFB and CNO (5%-AFB-CNO) and 0.8% corn gluten meal in place of corn grain. Thirty-two multiparous dairy cows (201 ± 46 d postpartum; 42.0 ± 5.5 kg/d 3.5% fat-corrected milk yield) were adapted to CTRL, blocked by milk yield, and randomly assigned to 1 of 4 treatment diets for 21 d with samples and data collected from d 15 through 21. Treatment 5%-CNO decreased DMI markedly and precipitously and was discontinued after d 5. In wk 3, 5%-AFB and especially 5%-AFB-CNO lowered total-tract NDF digested vs. CTRL (2.6 vs. 1.8 vs. 3.1 kg/d, respectively), likely because fat treatments reduced DMI and 5%-AFB-CNO impaired total-tract NDF digestibility. Milk fat concentrations were 3.10% (CTRL), 2.51% (5%-AFB), and 1.97% (5%-AFB-CNO) and correlated negatively to concentrations of C(18:2 trans-10,cis-12) in milk fat. Additionally, 5%-AFB and 5%-AFB-CNO tended to lower milk yield and decreased yields of solids-corrected milk and milk protein compared with CTRL. Fat treatments decreased milk lactose concentration, but increased milk citrate concentration. Moreover, cows fed 5%-AFB-CNO produced less solids-corrected milk than did cows fed 5%-AFB. In experiment 2, diets similar to CTRL contained 2.0, 3.0, or 4.0% CNO. Fifteen multiparous cows (219 ± 42 d postpartum; 42.1 ± 7.0 kg milk yield; mean ± SD) were blocked by DMI and randomly assigned to 1 of 3 treatment diets for an 8-d evaluation. Dietary concentration of CNO affected DMI, with the greatest depression at 4.0% CNO. Overall, dietary CNO depressed DMI and NDF digestibility of a high-starch diet compared with AFB. Feeding CNO to lactating cows equal to or greater than 2.5% decreased lactational performance or DMI.  相似文献   

19.
Forty lactating Holstein cows in early to midlactation were used in a randomized complete block design to measure the effects of the following diets on milk casein. Treatments were four complete rations fed for ad libitum intake consisting of 1) 60% concentrate, 10% alfalfa hay, and 30% corn silage; 2) 45% concentrate, 10% alfalfa hay, 30% corn silage, and 15% whole cottonseed; 3) 60% concentrate, 5% alfalfa hay, 20% corn silage, and 15% whole cottonseed; and 4) 45% concentrate, 10% alfalfa hay, 30% corn silage, and 15% rice bran. Least squares means for daily DM intake all were significantly different and were 3.51, 3.90, 3.28, and 3.74% BW, respectively. Cows fed diet 3 had higher arterial glucose and insulin and venous insulin. Least squares means were significantly different for milk yield, 30.1, 31.4, 28.4, and 31.6 kg/d; for milk protein, 3.30, 3.13, 3.48, and 3.12%; and for casein N, .376, .358, 3.73, and .330, respectively. However, milk protein and casein N yields were similar for all cows. The diet that contained the highest percentage of starch did not result in a significantly higher percentage of casein N in the milk but had the lowest milk production. Both whole cottonseed and rice bran, substituted for concentrate, depressed milk protein percentage.  相似文献   

20.
The effectiveness of neutral detergent fiber (NDF) from soyhulls and whole cottonseed for replacing NDF from forage was evaluated in a lactation trial during wk 10 to 25 of lactation. Forty-eight cows were blocked and randomly assigned within a block to one of four diets: 1) 21% forage NDF with corn 2) 16% forage NDF with corn, 3) 16% forage NDF with corn and wheat (1:1) and, 4) 11% forage NDF with cottonseed and corn. Soybean hulls were added at approximately 23.0% of dry matter (DM) for the 16 and 11% forage NDF diets to replace forage and formulate diets with 35% nonfiber carbohydrates. Actual forage NDF concentration were 17.8, 14.0, 13.9, and 9.4%, respectively. Dry matter intake and milk yield were highest for cows fed 11% forage NDF with cottonseed. Milk fat percentage was higher for cows consuming 21% forage NDF and 16% forage NDF with corn than for cows fed the two other diets. Cows fed 16% forage NDF with corn and wheat experienced milk fat-protein inversion, but ruminal acetate:propionate was lower for cows fed 11% forage NDF than cows fed 16% forage NDF. Body weight (BW) and BW change were not different among treatments. Time spent chewing was similar among all diets. For cows in midlactation, forage NDF may be reduced to 9 to 11% when cottonseed is at 11% of DM and dietary nonstructural carbohydrates are at 30% of DM. Forage NDF may be reduced to 14 to 16% without cottonseed when nonstructural carbohydrates are at 30% of DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号