首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S) on performance and durability of the SOFC. Single anode‐supported SOFCs with Ni–Yttria‐Stabilised‐Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum‐strontium‐manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni‐containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO) from CH4. Applying 1 A cm–2 current load, a maximum concentration of 7 ppm H2S was acceptable for a 24 h period.  相似文献   

2.
Hydrogen sulphide (H2S)‐fuelled solid oxide fuel cells (SOFCs) can potentially generate useful electrical energy while disposing of H2S, a toxic by‐product of the fossil fuel industry, on site. Experimental results from H2S fuelled SOFCs exhibit characteristics, for example, an unusual dependence of cell performance on fuel composition and flow‐rate, which are poorly explained in the literature. In this work we: (a) present results for experiments where the composition and flow‐rates were varied for both the fuel and oxidant streams to analyse their effect on fuel cell performance, and (b) develop and use a thermodynamic analysis to help understand these experimental results. Through this work, we shed further light on two basic questions unanswered so far, (1) Why does the flow‐rate of the fuel affect the open circuit potential of the fuel cell? (2) Which of the chemical species present in the fuel is oxidised on the anode? Our experiments and analysis suggest that H2S, and not H2 produced from H2S dissociation, is preferentially electro‐oxidised on the anode in our experiments. © 2011 Canadian Society for Chemical Engineering  相似文献   

3.
To develop solid oxide fuel cells (SOFCs) capable of operating on sulfur‐containing practical fuels at intermediate temperatures, further improvement of the sulfur tolerance of a Ni + BaZr0.4Ce0.4Y0.2O3‐δ (BZCY) anode is attempted through the addition of some metal modifiers (Fe, Co, and Ag) by a one‐pot synthesis approach. The effects of these modifiers on the electrical conductivity, morphology, sulfur tolerance, and electrochemical activity of the anode are systematically studied. As a result, the cell with Ag‐modified Ni + BZCY anode demonstrates highest power output when operated on 1000 ppm H2S‐H2 fuel. Furthermore, the Ag‐modified anode displays much better stability than Ni + BZCY with 1000 ppm H2S‐H2 fuel at 600°C. These results suggest that the addition of Ag modifier into Ni + BZCY is a promising and efficient method for improving the sulfur tolerance of SOFCs. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4287–4295, 2017  相似文献   

4.
The performances of solid oxide fuel cells (SOFCs) fed by different types of feed, i.e. biogas, biogas-reformed feed, methane-reformed feed and pure hydrogen, are simulated in this work. Maximum temperature gradient and maximum cell temperature are regarded as indicators for operation viability investigation whereas power density and electrical efficiency are considered as performance indicators. The change in operating parameters, i.e. excess air, fuel feed rate and operating voltage, affects both the performance and operation viability of SOFC, and therefore, these operating parameters should be carefully selected to obtain best possible power density and reasonable temperature and temperature gradient. Pure hydrogen feed offers the highest SOFC performance among the other feeds. Extremely high excess air is required for SOFC fed by biogas to become operation viable and, in addition, its power density is much lower than those of SOFCs fed by the other feeds. Methane-reformed feed offers higher power density than biogas-reformed feed since H2 concentration of the former one is higher.  相似文献   

5.
Sr2MgMo1  xVxO6  d (x = 0–0.2) materials with double perovskite structure were synthesized by sol–gel method, and studied for the possibility of being the anode of solid oxide fuel cells (SOFCs) with biogas as the direct fuel. The sample of Sr2MgMo0.95V0.05O6  d synthesized in 5%H2/Ar showed a conductivity higher than the samples with x > 0.05, but close to the sample without V. Besides, it showed better catalytic activity, stability, and H2S tolerance (up to 1% of H2S in the feed gas) for biogas combustion than the sample without V. This sample is promising for the anode of SOFCs using biogas fuel.  相似文献   

6.
Y. Xie  X. Xue 《Fuel Cells》2014,14(2):212-220
A direct H2S fueled SOFC model is developed based on Ni‐YSZ/YSZ/YSZ‐LSM button cell test stand. The model considers the detailed reforming chemical processes of H2S and multi‐physics transport processes in the fuel cell and fuel supply tubes. The model is validated using experimental data. Extensive simulations are performed to study the complicated interactions between multi‐physics transport processes and chemical/electrochemical reactions. The results elucidate the fundamental mechanisms of direct H2S fueled SOFCs. It is found that suitably increasing the H2O content in the supplied H2S fuel can improve SOFC electrochemical performance; high operating temperature may facilitate the reforming of H2S and improve the electrochemical performance. The sulfur poisoning effect may be mitigated by increasing the H2O content in the fuel, increasing the operating temperature, decreasing the flow rate, and/or making the cell work at low voltage (or high current) conditions.  相似文献   

7.
In this study, ammonia is presented as a feasible fuel for solid oxide fuel cells (SOFCs). Ammonia has several interesting features as fuel due to low‐production cost, high‐energy density and, focusing on fuel cells and hydrogen application, ammonia is an excellent H2 carrier thanks to high value of volumetric and gravimetric densities. The paper reports experimental test performed to evaluate the feasibility of NH3 directly fed to a 50 cm2 single cell SOFC. A test plan was developed to compare pure ammonia with an equivalent mix of ammonia, nitrogen, and hydrogen and the study of temperature and voltage values strongly indicates that a two stage oxidation of ammonia can be predicted and a previous cracking reaction occurs in the cell due to the nickel catalytic contribution. The study of temperatures and of heat flows show how the cell is cooled down to lower temperature because of heat adsorbed by the reaction and by flow mix entering the anode. The study shows also how for operative temperatures below 800 °C the cracking reaction takes place in the cell active area. Efficiency test demonstrates that the cell can operate at 300 mW cm–2 and 30% efficiency based on ammonia LHV.  相似文献   

8.
T. S. Li  C. Gao  M. Xu  B. Li  M. Wu  W. G. Wang 《Fuel Cells》2014,14(6):999-1005
Solid oxide fuel cells (SOFCs) have been considered as one of the most efficient power generators that can directly convert chemical energy in the natural gas, biomass, or coal‐derived gas to electrical energy. Various contaminants in syngas are capable to cause catalyst malfunction and cell performance drop, limiting fuel cell to a wide application. The effects of PH3 and CH3Cl fuel impurities on the electrochemical performance of SOFCs are investigated at various testing conditions. Performance drop caused by the addition of 10 ppm PH3 remains identical in pure hydrogen and simulated coal‐derived syngas at 750 °C, but a slight increase is observed when the cells are fueled syngas at 850 °C. The presence of CH3Cl in syngas causes cell degradation to a larger extent at 850 °C. Moreover, the cooperative influences of PH3 and CH3Cl impurities in hydrogen are also studied at 750, 800, and 850 °C. The addition of CH3Cl can stop and remove PH3 poisoning behavior, which is associated with each contaminant concentrations and operational temperatures. The related mechanism has been deeply analyzed and diagnosed.  相似文献   

9.
Shengji Wu  Eiji Sasaoka 《Fuel》2006,85(2):213-218
The characteristics of a novel method for Hg removal using H2S and sorbents containing iron oxide were studied. Previously, we have suggested that this method is based on the reaction of Hg and H2S over the sorbents to form HgS. However, the reaction mechanism is not well understood. In this work, the characteristics of the Hg removal were studied to clarify the reaction mechanism. In laboratory made sorbents containing iron oxide were used as the sorbent to remove mercury vapor from simulated coal derived fuel gases having a composition of Hg (4.8 ppb), H2S (400 ppm), CO (30%), H2 (20%), H2O (8%), and N2 (balance gas). The following results were obtained: (1) The presence of H2S was indispensable for the removal of Hg from coal derived fuel gas; (2) Hg was removed effectively by the sorbents containing iron oxide in the temperature range of 60-100 °C; (3) The presence of H2O suppressed the Hg removal activity; (4) The presence of oxygen may play very important role in the Hg removal and; (5) Formation of elemental sulfur was observed upon heating of the used sample.  相似文献   

10.
锰系可再生高温脱硫剂的制备及其性能测试   总被引:3,自引:0,他引:3       下载免费PDF全文
郭婧  王菊  梁斌 《化工学报》2013,64(7):2580-2586
煤气的高温脱硫净化是 IGCC 和 DRI 生产的瓶颈,直接影响整个过程的热效率。在50℃、pH值约为9的条件下采用硝酸锰、硝酸铝混合溶液与氨水进行共沉淀,制备了锰含量不同的脱硫剂,在固定床反应器中考察了脱硫剂的硫化及再生性能,并利用XRD、SEM、BET等手段表征了脱硫剂在硫化/再生过程中的物相和结构变化。共沉淀法制备的脱硫剂Mn/Al分散性好,在850℃高温下进行脱硫反应可以定量快速进行。脱硫硫容与脱硫剂锰含量呈正比,Mn-S/Mn-O交换原子比在0.90~0.95之间,改变空速和进口H2S含量并不改变脱硫硫容。采用O2浓度为3%的稀释空气在850℃下再生,再生后的硫容稳定,说明所制备的脱硫剂可用于高温可再生脱硫。  相似文献   

11.
《化学,工程师,技术》2017,89(9):1247-1254
Desulfurization of biogas is essential for its application in solid oxide fuel cells. The influence of CH4, CO2, H2, and O2 as well as the effect of moisture onto desulfurization performance of an activated carbon, an adsorbent based on a CuO‐MnO mixture, and a zeolite adsorbent were analyzed. The use of moisturized gas had no negative influence on the H2S adsorption performance of activated carbon. The CuO‐MnO sorbent showed the best performance, but the presence of moisture had a negative influence. The performance of zeolite dropped for three gas mixtures, while for two other mixtures moisture had little to no influence on H2S adsorption performance.  相似文献   

12.
Biomass, a source of renewable energy, represents an effective substitute to fossil fuels. Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g. biogas). In this work, the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H_2,CH_4, CO,and CO_2, which were then be used as the fuel for solid oxide fuel cell(SOFC). Planar SOFCs were fabricated and adopted. The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I–V polarization and electrochemical impedance spectra characterizations. An excellent cell performance was obtained, for example,the peak power density of the SOFC reached 1391 mW·cm~(-2) at 750℃ when the generated biogas was used as the fuel. Furthermore, the SOFC fuelled by simulated biogas delivered a very stable operation.  相似文献   

13.
P. Fan  X. Zhang  D. Hua  G. Li 《Fuel Cells》2016,16(2):235-243
A challenge in the operation of solid oxide fuel cells (SOFCs) with hydrocarbon fuels is the carbon deposition on the nickel/yttria‐stabilized zirconia (Ni/YSZ) anode. The Grabke‐type kinetic model has been proposed for the carbon formation based upon the assumption of elementary steps, which consist of a rate‐limiting dissociative chemisorption step and a stepwise dehydrogenation of the chemisorbed methyl group. This work experimentally studied the carbon formation on a SOFC Ni/YSZ anode exposed to CH4+H2 gas mixtures. Experiments were conducted with various gas compositions of CH4/H2 and temperatures in the range from 873 K to 1,123 K. The experimental results were used to determine a kinetic model that was applied to the SOFC operating environments. Based on the experimental data, the formula for the carbon formation rate that is dependent on the operating temperature and the gas compositions of CH4/H2 was established.  相似文献   

14.
Glass and glass-ceramic are one of the key sealing materials for solid oxide fuel cells (SOFCs) and they need to meet stringent requirements for long-term operation at high temperatures. Here, we report for the first time the incorporation of aluminum nitride (AlN) dopant into borosilicate glasses and glass-ceramics so as to tailor their basic properties and sealing performance. The results show the AlN-doped glass-ceramics exhibit remarkably enhanced thermal stability and chemical compatibility when adhering to Y2O3-ZrO2 electrolyte. The electrical conductivity is also significantly reduced by the AlN doping, and the conductivity of 15 wt.% AlN-doped glass-ceramic is nearly two orders of magnitude lower than that of the undoped glass-ceramic. This work indicates that AlN doping is an effective strategy to obtain a reliable borosilicate glass-ceramics for SOFCs.  相似文献   

15.
Two types of micro‐tubular hollow fiber SOFCs (MT‐HF‐SOFCs) were prepared using phase inversion and sintering; electrolyte‐supported, based on highly asymmetric Ce0.9Gd0.1O1.95(CGO) HFs and anode‐supported based on co‐extruded NiO‐CGO(CGO)/CGO HFs. Electroless plating was used to deposit Ni onto the inner surfaces of the electrolyte‐supported MT‐HF‐SOFCs to form Ni‐CGO anodes. LSCF‐CGO cathodes were deposited on the outer surface of both these MT‐HF‐SOFCs before their electrochemical performances were compared at similar operating conditions. The performance of the anode‐supported MT‐HF‐SOFCs which delivered ca. 480 mW cm–2 at 600 °C was superior to the electrolyte‐supported MT‐HF‐SOFCs which delivered ca. six times lower power. The contribution of ohmic and electrode polarization losses of both FCs was investigated using electrochemical impedance spectroscopy. The electrolyte‐supported MT‐HF‐SOFCs had significantly higher ohmic and electrode polarization ASR values; this has been attributed to the thicker electrolyte and the difficulties associated with forming quality anodes inside the small (<1 mm) lumen of the electrolyte tubes. Further development on co‐extruded anode‐supported MT‐HF‐SOFCs led to the fabrication of a thinner electrolyte layer and improved electrode microstructures which delivered a world leading 2,400 mW cm–2. The newly made cell was investigated at different H2 flow rates and the effect of fuel utilization on current densities was analyzed.  相似文献   

16.
The removal of high concentrations of H2S from waste gases containing mixtures of H2S and NH3 was studied using the pilot‐scale biofilter. Granular activated carbon (GAC), selected as support material in this study, demonstrated its high adsorption capacity for H2S and good gas distribution. Extensive tests to determine removal characteristics, removal efficiency, and removal capacity of high H2S levels and coexisting NH3 in the system were performed. In seeking the appropriate operating conditions, the response surface methodology (RSM) was employed. H2S removal capacities were evaluated by the inoculated bacteria (biological conversion) and BDST (Bed Depth Service Time) methods (physical adsorption). An average 98% removal efficiency for 0.083–0.167 mg dm?3 of H2S and 0.004–0.021 mg dm?3 of NH3 gases was achieved during the operational period because of rapid physical adsorption by GAC and subsequently an effective biological regeneration of GAC by inoculated Pseudomonas putida CH11 and Arthrobacter oxydans CH8. The results showed that H2S removal efficiency for the system was not affected by inlet NH3 concentrations. In addition, no acidification was observed in the BAC biofilter. High buffer capacity and low moisture demand were also advantages of this system. The maximal inlet loading and critical loading for the system were 18.9 and 7.7 g‐H2S m?3 h?1, respectively. The results of this study could be used as a guide for the further design and operation of industrial‐scale systems. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Hot Gas Desulfurizarion for IGCC is a new method to efficiently remove H2S in fuel gas with regenerable sorbents at high temperature and high-pressure conditions. The Korea Institute of Energy Research did operation of sulfidation in a desulfurizer and regeneration in a regenerator simultaneously at high pressure and high temperature conditions. The H2S concentration at exit was maintained continuously below 50ppmv at 11,000 ppmv of inlet H2S concentration. The sorbent had little effect on the reducing power in the inlet gas in the range from 11% to 33% of H2. As inlet H2S concentration was increased, H2S concentration in the product gas was also increased linearly. The sorbent was maintained at low sulfur level by the continuous regeneration and the continuous solid circulation at the rate of 1.58× 10−3 kg/s with little mean particle size change.  相似文献   

18.
Solid oxide fuel cells (SOFCs) based on the proton conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte were prepared and tested in 500–700 °C using humidified H2 as fuel (100 cm3 min–1 with 3% H2O) and dry O2 (50 cm3 min–1) as oxidant. Thin NiO‐BZCY anode functional layers (AFL) with 0, 5, 10 and 15 wt.% carbon pore former were inserted between the NiO‐BZCY anode and BZCY electrolyte to enhance the cell performance. The anode/AFL/BZCY half cells were prepared by tape casting and co‐sintering (1,300 °C/8 h), while the Sm0.5Sr0.5CoO3–δ (SSC) cathodes were prepared by thermal spray deposition. Well adhered planar SOFCs were obtained and the test results indicated that the SOFC with an AFL containing 10 wt.% pore former content showed the best performance: area specific resistance as low as 0.39 Ω cm2 and peak power density as high as 0.863 W cm–2 were obtained at 700 °C. High open circuit voltages ranging from 1.00 to 1.12 V in 700–500 °C also indicated negligible leakage of fuel gas through the electrolyte.  相似文献   

19.
固体氧化物燃料电池高效利用生物质气前景分析   总被引:1,自引:1,他引:0  
生物质气具有来源广、总量大的特点,其规模化利用可有效缓解我国未来能源供需紧张的矛盾,但实现规模化利用的前提是开发出适合其分散、热值低、组成变化等特点的利用技术. 本工作分析了我国生物质气的资源情况,阐述了生物质气利用技术的现状与未来发展趋势,并对固体氧化物燃料电池(SOFC)转换生物质气的技术与经济可行性进行了分析. 结果表明,SOFC能够很好地适应生物质气分散、热值低、组成变化的特点,与传统发电方式相比,SOFC发电可望具有更好的经济性. SOFC规模化利用生物质气将可缓解我国未来电力供需紧张矛盾,具有很好的环境及社会效益,发展前景广阔.  相似文献   

20.
The electrical conduction behaviors of isovalent and acceptor dopants on B site of (La0.8Ca0.2)CrO3−δ perovskites at high and low oxygen activities were investigated systematically. In this study, the concept of defect chemistry is used to explain the relationship between the concentration of electron hole with the electrical conductivity. The information of charge compensation mechanisms and defect formation may be valuable for a better understanding of the interconnect of (La0.8Ca0.2)CrO3−δ-based ceramics used for solid oxide fuel cells (SOFCs). Since (La0.8Ca0.2)CrO3−δ-based specimens belong to p-type conductors, their conductivities are proportional to the concentration of electron hole. In reducing atmosphere, the oxygen may be lost and ionic compensation may be take place through the formation of oxygen vacancies and the electrical compensation may arise by changing the valence of Cr from tri-valence to tetra-valence in reducing atmosphere. However the formation of oxygen vacancies has no contribution to electrical conductivity, the compensation mechanism is dominated by the electrical compensation, i.e. the take place a transition of Cr3+ → Cr4+ rather than that of ionic compensation, i.e. the formation of oxygen vacancies. Based on the defect chemical reactions and the results of electrical conductivity, the concentration of electron hole at high oxygen activity is larger than that at low oxygen activity. Therefore the electrical conductivity of (La0.8Ca0.2)CrO3−δ-based ceramics at air is larger than that at 5% H2–95% Ar forming gas. The compensation mechanisms contain ionic and electrical compensation and the ratios of electrical to ionic compensation varied with the kind of dopant which significantly effects the electrical conductivity. The results suggest that the (La0.8Ca0.2)Cr0.9Co0.1O3−δ specimen shows high electrical conductivity in air (σ850 °C = 59.59 S/cm) and 5% H2–95% Ar forming gas (σ850 °C = 47.98 S/cm) leading it a promising candidate as an interconnect material for SOFCs applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号