首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Several novel oxidation removal processes of elemental mercury (Hg0) from flue gas using combined Fe2+/Mn2+ and heat activated peroxymonosulfate (PMS)/H2O2 solutions in a bubbling reactor were proposed. The operating parameters (e.g., PMS/H2O2 concentration, Fe2+/Mn2+ concentration, solution pH, activation temperature, and Hg0/NO/SO2/O2/CO2 concentration), mechanism and mass transfer-reaction kinetics of Hg0 removal were investigated. The results show that heat and Fe2+/Mn2+ have significant synergistic effect for activating PMS and PMS/H2O2 to produce free radicals to oxidize Hg0. Hg0 removal is strongly affected by PMS/H2O2 concentration, Fe2+/Mn2+ concentration, activation temperature, and solution pH. · and ·OH produced from combined heat and Fe2+/Mn2+ activated PMS/H2O2 play a leading role in Hg0 removal. Under optimized experimental conditions, Hg0 removal efficiencies reach 100, 94.9, 66.9, and 58.9% in heat/Fe2+/PMS/H2O2, heat/Mn2+/PMS/H2O2, heat/Fe2+/PMS, and heat/Mn2+/PMS systems, respectively. Hg0 removal processes in four systems belong to fast reaction and were controlled by mass transfer under optimized experimental conditions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 161–174, 2019  相似文献   

3.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

4.
The oxidation of ferrous ions in acidic sulfate solutions in the presence of cupric ions at elevated air pressures was investigated in a high-intensity gas–liquid contactor. The study was required for the design of the regeneration steps of the novel Vitrisol® desulphurization process. The effects of the Fe2+ concentration, Cu2+ concentration, Fe3+ concentration, initial H2SO4 concentration, and partial oxygen pressure on the reaction rate were determined at three different temperatures, i.e., T?=?50?°C, 70?°C, and 90?°C. Most of the experiments were determined to be affected by the mass transfer of oxygen, and therefore true intrinsic kinetics could not be fully determined. An increase in Fe2+ and Cu2+ concentrations, as well as the partial pressure of oxygen and temperature, increased the Fe2+ oxidation rate. H2SO4 did not influence the Fe2+ oxidation rate. An increase in Fe3+ concentration decreased the Fe2+ oxidation rate. Although determined from experiments partially affected by mass transfer, a first order of reaction in Fe2+ was observed, fractional orders in both Cu2+ and O2 were measured, a zero order in H2SO4 was determined, and a negative, fractional order in Fe3+ was obtained. The activation energy was estimated to be 31.3?kJ/mol.  相似文献   

5.
In this work, advanced oxidation removal of nitric oxide (NO) from flue gas by homogeneous Photo‐Fenton was investigated in a photochemical reactor and the effects of several influencing factors on NO removal were evaluated. The gas‐liquid reaction products were determined. The reaction pathways of NO removal are also preliminarily discussed. It was found that with the increase of Fe2+ concentration, NO removal efficiency first increased and then decreased. Increasing H2O2 concentration and UV radiation intensity greatly increased NO removal efficiency, but the growth rates gradually became smaller. NO removal efficiency greatly reduced with the increase of gas flow and NO concentration, and only slightly decreased with the increase of solution temperature, but significantly increased with the increase of initial solution pH value. The main anion product in the liquid phase was NO3. With respect to removal of NO using homogeneous Photo‐Fenton, ·OH oxidation was the main reaction pathway, and H2O2 oxidation was the secondary reaction pathway.  相似文献   

6.
A novel process on simultaneous removal of NO and SO2 using aqueous peroxymonosulfate (PMS) with synergic activation of Cu2+/Fe3+ and high temperature in an impinging stream reactor is developed for the first time. Effects of PMS concentration, Cu2+/Fe3+ concentration, reaction temperature, solution pH, flue gas flow, liquid–gas ratio, gas components, and inorganic ions on NO/SO2 removals were investigated. Active species and products were determined by electron spin resonance spectroscopy and ion chromatography. Removal pathways of NO/SO2 were revealed, and mass transfer‐reaction kinetics of NO removal was studied. The optimal experimental conditions are obtained. H2SO4 and HNO3 are the main products. It is found that there is a clear synergy between Cu2+/Fe3+ and high temperature for activating PMS. and ·OH are found to be the main oxidants for NO removal. NO removals belong to pseudo‐first fast reactions in the two investigated oxidation systems. Besides, the kinetic parameters are also measured. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1287–1302, 2017  相似文献   

7.
A novel photochemical spray reactor is first developed and is used to remove Hg0 and simultaneously remove Hg0/SO2/NO from flue gas by ultraviolet (UV)/H2O2 process. The effects of several parameters (UV wavelength, UV power, H2O2 concentration, Hg0 inlet concentration, solution temperature, liquid–gas ratio, solution pH, SO2 concentration, NO concentration, and O2 concentration) on removal of Hg0 by UV/H2O2 process were investigated. Removal mechanism of Hg0 is proposed and simultaneous removal of Hg0, NO, and SO2 is also studied. The results show that the parameters, UV wavelength, UV power, H2O2 concentration, liquid–gas ratio, solution pH, and O2 concentration, have significant impact on removal of Hg0. However, the parameters, Hg0 inlet concentration, solution temperature, SO2 concentration, and NO concentration, only have small effect on removal of Hg0. Hg2+ is the final product of Hg0 removal, and Hg0 is mainly removed by oxidations of H2O2, ·OH, · O, O3, and photoexcitation of UV. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2275–2285, 2014  相似文献   

8.
Mercury emissions from coal-fired power plants account for 40% of the anthropogenic mercury emissions in the U.S. The speciation of mercury largely determines the amount of mercury capture in control equipments. Conversion of insoluble Hg0 into more soluble Hg2+ facilitates its removal in scrubbers. Past studies suggest that an added supply of OH radicals possibly enhance the mercury oxidation process. This study demonstrates that the application of H2O2, as source of OH radicals, accelerates the oxidation of Hg0 into Hg2+. A detailed kinetic reaction mechanism was compiled and the reaction pathways were established to analyze the effect of H2O2 addition. The optimum temperature range for the oxidation was 480–490 °C. The sensitivity analysis of the reaction mechanism indicates that the supply OH radicals increase the formation of atomic Cl, which accelerates the formation of HgCl2 enhancing the oxidation process. Also, the pathway through HOCl radical, generated by the interactions between chlorine and H2O2 was prominent in the oxidation of Hg0. The flue gas NO was found to be inhibiting the Hg0 oxidation, since it competed for the supplied H2O2. Studying the interactions with the other flue gas components and the surface chemistry with particles in the flue gas could be important and may improve the insight into the post combustion transformation of mercury in a comprehensive way.  相似文献   

9.
Converting elemental mercury into divalent compound is one of the most important steps for mercury abatement from coal fired flue gas. The oxidation of elemental mercury was investigated in this paper using dielectric barrier discharge (DBD) non-thermal plasma (NTP) technology at room temperature. Effects of different flue gas components like oxygen, moisture, HCl, NO and SO2 were investigated. Results indicate that active radicals including O, O3 and OH all contribute to the oxidation of elemental mercury. Under the conditions of 5% O2 in the simulated flue gas, about 90.2% of Hg0 was observed to be oxidized at 3.68 kV discharge voltage. The increase of discharge voltage, O2 level and H2O content can all improve the oxidation rate, individually. With O2 and H2O both existed, there is an optimal moisture level for the mercury oxidation during the NTP treatment. In this test, the observed optimal moisture level was around 0.74% by volume. Hydrogen chloride can promote the oxidation of mercury due to chlorine atoms produced in the plasma process. Both NO and SO2 have inhibitory effects on mercury oxidation, which can be attributed to their competitive consumption of O3 and O.  相似文献   

10.
A novel NO removal system is designed, where NO is initially oxidized by ?OH radicals from the decomposition of hydrogen peroxide (H2O2) over hematite and then absorbed by ammonium-based solution. According to the high performance liquid chromatography (HPLC) profile and the isopropanol injection experiments, the ?OH radicals are proved to play a critical role in NO removal. The NO removal efficiency primarily depends on H2O2 concentration, gas hourly space velocity (GHSV), H2O2 feeding rate and reaction temperature, while the flue gas temperature slightly affects the NO removal efficiency. The low H2O2 consumption makes this system a promising technique in NO removal process using wet-method. The evolution of catalyst in reaction is analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The nitrite ion and nitrate ion in aqueous solution are detected by the continuous phase flow analyzer. Finally, the macrokinetic parameters of the NO oxidation are obtained by using the initial rate method.  相似文献   

11.
This series of papers describes the development of technology to convert Hg(0) to Hg(II) in coal-derived flue gas based on the well-known Fenton reactions so that a Hg control strategy can be implemented in a wet scrubber. This effort consists of both bench-scale and pilot-scale work. This first paper reports on the bench-scale tests. The bench-scale results showed that Hg(0) oxidation can be achieved by the Fenton reactions and the oxidation rate is quantitatively dependent on the residence time of the Hg stream in the solution. An average of 75% oxidation of Hg(0) was achieved. Iron-based Fenton-type additives gave much more promising results compared to Cu-based Fenton-like additives for Hg(0) oxidation. The pH value of the sorbent solution also had a significant effect on the oxidation of Hg(0) and a suitable pH window was found to lie between 1.0 and 3.0 for this application. This may be attributed to the chain reaction mechanisms of Fe3+/H2O2 for Fenton reactions, i.e., the decomposition of H2O2 for the production of OOH radicals in the Fe3+/H2O2 system which is kinetically favoured under a wide range of conditions at pH values of 3 or less. At higher pH values, H2O2 is converted to H2O instead of OOH radicals in the presence of Fe3+.  相似文献   

12.
A chemo‐biochemical process for desulfurization of simulated natural gas containing hydrogen sulfide (H2S) was investigated. The results showed that using polyurethane foam as a support for immobilization of Acidithiobacillus ferrooxidans obtained good biological oxidation performance and the maximum oxidation rate of ferrous iron was 4.12 kg m?3 h?1. Moreover, a semi‐empirical formula was set up for calculating theoretical ferrous oxidation rate as a function of influent Fe2+ and Fe2+ concentration in the bioreactor. The integrated chemical and biological process achieved removal efficiencies of about 80% when treating high concentrations of H2S (15 000 ± 100 ppmv). © 2012 Society of Chemical Industry  相似文献   

13.
Chemical looping partial oxidation of methane using a sole CO2 oxidant (CL‐POM‐CO2) is an emerging technology for synthesis gas generation and CO2 utilization, which is highly dependent on an oxygen carrier (OC). In this work, Fe‐substituted La‐hexaaluminate as the OC was found to exhibit good reactivity and stability during 50 periodic CH4/CO2 redox cycles due to the formation of magnetoplumbite La‐hexaaluminate structure with the introduction of La. Deeper reduction for synthesis gas generation did not destroy the La‐hexaaluminate structure via a charge compensation mechanism, which increased CH4 reactivity and further improved CO2 utilization under subsequent re‐oxidation. In the La‐hexaaluminate structure, O6‐Fe3+(Oh) was highly active for the total oxidation of methane, while O5‐Fe3+(Tr) and O4‐Fe3+(Th) selectively oxidized CH4 to synthesis gas. The sole CO2 oxidant only selectively recovered O5‐Fe3+(Tr) and O4‐Fe3+(Th), and thus is more favorable for improving synthesis gas selectivity than O2/air, which offers an attractive opportunity for CO2 utilization. © 2017 American Institute of Chemical Engineers AIChE J, 64: 550–563, 2018  相似文献   

14.
The effects of several influencing factors (CaO and H2O2 concentration, gas flow, solution temperature, NO, SO2, O2 and CO2 concentration) on the simultaneous removal of NO and SO2 from flue gas by using a UV/H2O2/CaO process were studied. In addition, the anions in the liquid phase were measured by ion chromatography and the material balances for NO and SO2 were calculated. It was found that, under all experimental conditions, this process achieved a SO2 removal efficiency of 100 %. With the increase in CaO concentration, NO removal efficiency first increased and then remained almost unchanged. With the increase in H2O2 concentration, NO removal efficiency increased but the changes gradually became smaller. NO removal efficiency greatly decreased with increasing gas flow, NO concentration and CO2 concentration. Slightly increasing the solution temperature and SO2 concentration reduced NO removal efficiency. Increasing O2 concentration can promote the removal of NO. The anions in the liquid phase were mainly SO42– and NO3. Most of the low valence nitrogen elements in NO and the low valence sulfur elements in SO2 transformed into the high valence nitrogen element in NO3 and the high sulfur element in SO42–.  相似文献   

15.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

16.
For the safe and trouble‐free operation of a manufacturing plant and the safe storage of acrylic, as well as methacrylic monomers, it is important to know the polymerization stability as a function of the process parameters (temperature, oxygen concentration, and impurities, e.g., metal ions). Contamination with metal ions can be caused by the corrosion of steel units. Therefore, the influence of the metal ions Cr3+, Fe3+, Ni2+ and Cu2+ in the concentration range of 0–10 ppm (g g–1) on the polymerization behavior and the oxygen consumption of acrylic and methacrylic acid were examined in this work. It was shown that Cr3+, Ni2+, and Cu2+ ions extend the inhibition period of acrylic acid (AA) and methacrylic acid (MAA) and reduce the O2 consumption. Fe3+ ions, however, cause a decrease of the inhibition period and in the case of AA an increase of the O2 consumption, which leads, in the end, to a faster unintentional polymerization. Therefore, alloys which contain iron should be avoided as far as possible in the construction of AA plants. Fe3+‐ions show the opposite influence towards MAA, here the presence of Fe3+ shows a stabilizing effect.  相似文献   

17.
Element mercury (Hg0) from flue gas is difficult to remove because of its low solubility in water and high volatility. A new technology for photooxidative removal of Hg0 with an ultraviolet (UV)/H2O2 advanced oxidation process is studied in an efficient laboratory-scale bubble column reactor. Influence of several key operational parameters on Hg0 removal efficiency is investigated. The results show that an increase in the UV light power, H2O2 initial concentration or H2O2 solution volume will enhance Hg0 removal. The Hg0 removal is inhibited by an increase of the Hg0 initial concentration. The solution initial pH and pH conditioning agent have a remarkable synergistic effect. The highest Hg0 removal efficiencies are achieved at the UV light power of 36W, H2O2 initial concentration of 0.125 mol/L, Hg0 initial concentration of 25.3 μg/Nm3, solution initial pH of 5, H2O2 solution volume of 600 ml, respectively. In addition, the O2 percentage has little effect on the Hg0 removal efficiency. This study is beneficial for the potential practical application of Hg0 removal from coal-fired flue gas with UV/H2O2 advanced oxidation process.  相似文献   

18.
UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学   总被引:3,自引:0,他引:3  
刘杨先  潘剑锋  刘勇 《化工学报》2013,64(3):1062-1068
在实验室规模的光化学反应器中,基于实验研究﹑动力学理论以及双膜理论,研究了UV/H2O2氧化联合CaO吸收(UV/H2O2-CaO工艺)脱除燃煤烟气中NO的传质-反应动力学。分析了NO吸收的传质-反应过程,明确了NO吸收过程的主要控制步骤和强化措施,测定了关键的动力学参数,推导了NO吸收过程的理论模型。结果表明:在实验范围内,NO吸收速率随着NO浓度的增加几乎呈线性增加。随着H2O2浓度和CaO浓度的增加,NO的吸收速率均呈现先增加后变缓的趋势。UV/H2O2-CaO工艺脱除NO是一个拟一级快速反应过程,强化气相主体扰动﹑增加气液接触面积和提高NO分压可有效提高NO的吸收速率。NO吸收速率方程的计算值和实验值具有较好的一致性。  相似文献   

19.
Three types of photocatalytic NO removal reaction including photo-assisted selective catalytic reduction (photo-SCR), photo-oxidation and photo-decomposition, were designated in the flue gas under elevated temperatures. The reliability of reaction pathways is supported by the excellent agreement of the change in the thermodynamic properties of individual catalytic reactions. The presence of O2 could further effectively improve the photocatalytic activity at the low reaction temperature. However, an excess consumption of both O2 and C4H10 was recognized by oxidation of C4H10 at the higher reaction temperature, resulting in the drop of the NO removal. This study provides the basis for designing the photocatalytic removal of NO with a hydrocarbon in the flue gas.  相似文献   

20.
亚甲基蓝光度法研究基于CaO2的Fenton反应条件   总被引:1,自引:0,他引:1       下载免费PDF全文
刘娇  孟范平  王震宇  刘启元 《化工学报》2011,62(9):2520-2526
CaO2作为原位Fenton 氧化修复中H2O2持续供源的作用逐渐受到关注。利用亚甲基蓝分光光度法评价了基于CaO2的Fenton反应中催化剂种类、初始pH值、CaO2用量、催化剂和CaO2比例、磷酸缓冲溶液浓度对羟基自由基(HO·)产率的影响。结果表明,采用Fe2+作为催化剂,在pH值为4、CaO2相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号