首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary Sb2O3-GeO2 glasses containing 45 mol% Sb2O3 and ternary Sb2O3-B2O3-GeO2 glasses containing 50 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined, and their colors and high-temperature viscosities were estimated visually. Small amounts of Sb2O3 (∼10 mol%) appear to perturb neither the Ge-O-Ge network nor those B-O-Ge networks with small B/Ge ratios (∼0.2). The B-O-Ge networks with larger B/Ge ratios (∼1.0) depolymerize in the presence of even less Sb2O3. Amounts of Sb2O3 >10 mol% appear to depolymerize the Ge-O-Ge and Ge-O-B networks progressively, possibly with the formation of chains. A structurally sensitive ir isofrequency contour technique developed for ternary glass systems was applied successfully to these Sb2O3-B2O3-GeO2 glasses. These contours can thus readily detect significant network depolymerization in the absence of the usual network modifiers.  相似文献   

2.
In this study we used solid-state synthesis to determine the phase relations in the pyrochlore-rich part of the Bi2O3−TiO2−Nd2O3 system at 1100°C. The samples were analyzed using X-ray powder diffraction and scanning electron microscopy with energy- and wavelength-dispersive spectroscopy. A single-phase pyrochlore ceramic was obtained with the addition of 4.5 mol% of Nd2O3. We determined the solubility limits for the three solid solutions: (i) the pyrochlore solid solution Bi(1.6–1.08 x )Nd x Ti2O(6.4+0.3 x ), where 0.25< x <0.96; (ii) the solid solution Bi4− x Nd x Ti3O12, where 0< x <2.6; and (iii) the Nd2− x Bi x Ti2O7 solid solution, where 0< x <0.35. The determined phase relations in the pyrochlore-rich part are presented in a partial phase diagram of the Bi2O3−TiO2−Nd2O3 system in air at 1100°C.  相似文献   

3.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

4.
The subsolidus phase equilibria in the system Bi2O3-TiO2-Nb2O5 at 1100°C were determined by solid-state reaction techniques and X-ray powder diffraction methods. The system was found to contain 4 ternary compounds, i.e. Bi3TiNbO9, Bi7Ti4NbO21, a cubic pyrochlore solid solution having a compositional range of 3Bi2O3· x TiO2 (7– x )Nb2O5 where x ranges from 2.3 to 6.75, and an unidentified phase, 4Bi2O3·11TiO2·5Nb2O5.  相似文献   

5.
Phase relations in the system Bi2O3-WO3 were studied from 500° to 1100°C. Four intermediate phases, 7Bi2O3· WO3, 7Bi2O3· 2WO3, Bi2O3· WO3, and Bi2O3· 2WO3, were found. The 7B2O · WO3 phase is tetragonal with a 0= 5.52 Å and c 0= 17.39 Å and transforms to the fcc structure at 784°C; 7Bi2O3· 2WO3 has the fcc structure and forms an extensive range of solid solutions in the system. Both Bi2O3· WO3 and Bi2O3· 2WO3 are orthorhombic with (in Å) a 0= 5.45, b 0=5.46, c 0= 16.42 and a 0= 5.42, b 0= 5.41, c 0= 23.7, respectively. Two eutectic points and one peritectic exist in the system at, respectively, 905°± 3°C and 64 mol% WO3, 907°± 3°C and 70 mol% WO3, and 965°± 5°C and 10 mol% WO3.  相似文献   

6.
Previous studies on glass formation involving GeO2 with Bi2O3, TI2O, and PbO were extended by the use of Sb2O3. Wide areas of glass formation occur in the systems GeO2-PbO-Sb2O3 and GeO2-Bi2O3-Sb2O3 at all but the lowest GeO2 contents; the region of single-phase glasses in the system GeO2-Tl2O-Sb2O3 is severely restricted. Glasses were examined by powder X-ray diffraction, differential thermal analysis, thermomechanical analysis, and Archimedes'technique to obtain glass transition and crystallization exotherm temperatures, thermal expansion coefficients, and densities; these properties are presented in diagrams for the GeO2-Sb2O3 binary and for two ternary systems. Based on calculated values of Δo,the waveleneth for zero material dispersion. and dM/dΔ . the material disiersion slope at Δo, compositions in these systems may be useful for the construction of ultralow-loss optical waveguides in the 3 to 4 μm region.  相似文献   

7.
Ternary Na2O.Sb2O3.GeO2 glasses (with various [Na]/[Na + Sb] ratios) that contained ≥65 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined and their colors noted. The ternary glasses with ≥88 mol% GeO2 exhibit nearly additive volumes, refractivities, and frequencies for the main Ge-O vibration. Ternary glasses with lesser amounts of GeO2 exhibit a variety of behaviors, depending on the [Na]/[Na + Sb] ratio. Small amounts of Sb2O3 cause significant volume and refraction deviations, as well as changes in νGe-O, that can be associated with gradual elimination of GeO6 octahedra. All the information supports a model for the glasses with 65 to 88 mol% GeO2 that involves a degree of depolymerization that is greater when Na2O and Sb2O3 are present together than when either is present alone.  相似文献   

8.
GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscoptic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol% GeO2 were examined.  相似文献   

9.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

10.
The Bi2O3-rich side of the system Bi2O3-SiO2 was studied with powder X-ray diffraction and differential thermal analysis. In the composition 6Bi2O3. x SiO2, the metastable γ phase (bcc) was observed to exist over the range of 0 < x ≤ 1. In most of the compositions studied, metastable phases of water-quenched melts transformed into another metastable phase before reaching stable phases. A modification of the phase diagram is proposed.  相似文献   

11.
Emission properties of PbO–Bi2O3–Ga2O3 glasses doped with Ho3+ were investigated for fiber-optic amplification at the 1.18 μm wavelength region. When the glasses were doped with Ho3+ ions only, there was a weak emission at 1.18 μm with a lifetime of ∼200 μs. However, when Yb3+ ions were codoped, the lifetime of the 1.18 μm emission increased to 630 μs together with a significant increase in intensity. A similar enhancement in the intensity and lifetimes was realized for the 2.05 μm emission. These effects are due to energy transfer from the Yb3+:2F5/2 to the Ho3+:5I6 level. Devitrification of the ternary PbO–Bi2O3–Ga2O3 glasses was efficiently suppressed by adding 10 mol% GeO2. Optimum Ho3+ concentration was ∼0.4 mol%, whereas Yb3+ ions can be added up to the solubility limit.  相似文献   

12.
The subsolidus phase diagram of the system Bi2O3–ZnO–Ta2O5 in the region of the cubic pyrochlore phase has been determined at 1050°C. This phase forms a solid solution area that includes the ideal composition P, Bi3Zn2Ta3O14; possible solid solution mechanisms are proposed, supported by density measurements of Zn-deficient solid solutions. The general formula of the solid solutions is Bi3+ y Zn2− x Ta3− y O14− x − y , based on the creation of Zn2+, O2− vacancies in Zn-deficient compositions and a variable Bi/Ta ratio.  相似文献   

13.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

14.
Two cubic pyrochlore phases exist in the system ZnO–Bi2O3–Sb2O5. Neither has the supposed "ideal" stoichiometry, Zn2Bi3Sb3O14. One, P 1, is a solid solution phase, Zn2+ x Bi2.96−( x − y )Sb3.04− y O14.04+δ where 0< x <0.13(1), 0< y <0.017(2) and a =10.4285(9)−10.451(1) Å. The other, P 2, is a line phase, Zn2Bi3.08Sb2.92O13.92 with a =10.462(2) Å. Subsolidus phase relations at 950°C involving phases P 1 and P 2 in the ZnO–Bi2O3–Sb2O5 phase diagram have been determined.  相似文献   

15.
The Bi2O3-PbO phase diagram was determined using differential thermal analysis and both room- and high-temperature X-ray powder diffraction. The phase diagram contains a single eutectic at 73 mol% PbO and 635°C. A body-centered cubic solid solution exists above ∼600°C within a composition range of 30 to 65 mol% PbO. The compounds α-Bi2O3, σ5-Bi2O3, and γ-PbO (litharge) have wide solubility ranges. Four compounds, 6Bi2O3·PbO, 3Bi2O3·2PbO, 4Bi2O3,5PbO, and Bi2O3·3PbO, are formed in this system and the previously unreported X-ray diffraction patterns of the latter three compounds are reported. Diffraction patterns for some of these mixed oxides have been observed in ZnO-based varistors grown using Bi2O3 and PbO as sintering aids.  相似文献   

16.
The occurrence of glass in the three binary and one ternary oxide systems containing Ge, Bi, and Tl was studied by air- and water-quenching melted samples. Bulk glass occurred widely in these systems and was obtained with as little as 10 mol% GeO2, combined with 68 mol% BiO1.5 and 22 mol% TIO0.5. Some glass occurred in all compositions except those with the highest Bi2O3 or TI2O contents. Glass specimens were studied by differential thermal analysis to yield glass transition and crystallization exotherm temperatures; the thermal expansion coefficients and densities were also measured. Diagrams are presented to show the variation of these properties as well as λ0, the wavelength for zero material dispersion, in the binary and ternary systems. Based on these data, it is demonstrated that ultralow-loss optical waveguides can be constructed in the 3-3.5-μm regionb.  相似文献   

17.
The previously studied system GeO2-Bi2O3-TI2O was extended with the addition of PbO using air- and water-quenched melted samples. Large areas of glass formation were found in the systems GeO2–Bi2O3–PbO and GeO2–PbO–Tl2O at all but the lowest GeO2 contents. Glasses were examined by powder X-ray diffraction, differential thermal analysis, thermomechanical analysis, and Archimedes'technique to obtain glass transition and crystallization exotherm temperatures, thermal expansion coefficients, and densities, which are presented in diagrams for the GeO2-PbO binary and for the two ternary systems. Based on calculated values of λ0, the wavelength for zero material dispersion, compositions in this system may be useful for construction of ultralow-loss optical waveguides in the μm region.  相似文献   

18.
Gels of the ZrO2-GeO2(-H2O) system have been prepared via the hydrolysis-polycondensation of zirconium and germanium isopropoxides. Phase relationships have been deduced from differential thermal analysis, thermogravimetric analysis, and shrinkage analysis and are discussed on the basis of X-ray diffractometry and Raman scattering studies. Emphasis has been given to understanding the short-range structure. A small glass-forming domain is observed in the temperature range of 600°−700°C for compositions of 30–40 mol% GeO2.  相似文献   

19.
The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol% Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3- x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log p O2=−20 (where p O2 is given in units of atm), which indicates practical usefulness as an ionic conductor.  相似文献   

20.
Some K2O-Nb2O5-GeO2 glasses are prepared, and their crystallization behaviors are examined. 25K2O·25Nb2O5·50GeO2 glass with the glass transition temperature T g= 622°3C and crystallization onset temperature T x= 668°3C shows a prominent nanocrystallization. The crystalline phase is K3,8Nb5Ge3O20,4 with an orthorhombic structure. The sizes of crystals in the crystallized glasses heat-treated at 630° and 720°3C for 1 h are °10 and 20–30 nm, respectively, and the crystallized glasses obtained by heat treatments at 620°-850°3C for 1 h maintain good transparency. The density of crystallized glasses increases gradually with increasing heat-treatment temperature, and the volume fraction of crystals in the sample heat-treated at 630°3C for 1 h is estimated to be ∼35%. The usual Vickers hardness and Martens hardness (estimated by nanoindentation) of 25K2O·25Nb2O5·50GeO2 glass change steeply by heat treatment at T g, i.e., at around 35% volume fraction of nanocrystals. The present study demonstrates that the composite of nanocrystals and the glassy phase has a strong resistance against deformation during Vickers indenter loading in crystallized glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号