首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This work studies the scheduling problem where a set of jobs are available for processing in a no-wait and separate setup two-machine flow shop system with a single server. The no-wait constraint requires that the operations of a job have to be processed continuously without waiting between two machines. The setup time is incurred and attended by a single sever which can perform one setup at a time. The performance measure considered is the total completion time. The problem is strongly NP-hard. Optimal solutions for several restricted cases and some properties for general case are proposed. Both the heuristic and the branch and bound algorithms are established to tackle the problem. Computational experiments indicate that the heuristic and the branch and bound algorithm are superior to the existing ones in term of solution quality and number of branching nodes, respectively.  相似文献   

2.
This paper addresses a preemptive scheduling problem on two parallel machines with a single server. Each job has to be loaded (setup) by the server before being processed on the machines. The preemption is allowed in this paper. The goal is to minimize the makespan. We first show that it is no of use to preempt the job during its setup time. Namely, every optimal preemptive schedule can be converted to another optimal schedule where all the setup times are non-preemptively performed on one machine. We then present an algorithm with a tight bound of 4/3 for the general case. Furthermore, we show that the algorithm can produce optimal schedules for two special cases: equal processing times and equal setup times, which are NP-hard in the non-preemptive version.  相似文献   

3.
In this paper, we consider the on-line scheduling of two parallel identical machines sharing a single server with the objective of minimizing the latest completion time of all jobs. Each job has to be setup by the server before being processed on one of the machines. Three special cases: equal length jobs, equal processing times and regular equal setup times are considered and the asymptotic competitive ratios of list scheduling are determined. Also, a lower bound for the equal length job case is given, and two heuristics with tight asymptotic competitive ratios for the other two cases are proposed.  相似文献   

4.
Shachnai  Tamir 《Algorithmica》2002,32(4):651-678
Abstract. Modern computer systems distribute computation among several machines to speed up the execution of programs. Yet, setup and communication costs, as well as parallelism constraints, bound the number of machines that can share the execution of a given application, and the number of machines by which it can be processed simultaneously . We study the resulting scheduling problem, stated as follows. Given a set of n jobs and m uniform machines, assign the jobs to the machines subject to parallelism and machine allotment constraints, such that the overall completion time of the schedule (or makespan ) is minimized. Indeed, the multiprocessor scheduling problem (where each job can be processed by a single machine) is a special case of our problem; thus, our problem is strongly NP-hard. We present a (1+ α) -approximation algorithm for this problem, where α ∈ (0,1] depends on the minimal number of machine allotments and the minimal parallelism allowed for any job. Also, we show that when the maximal number of machines that can share the execution of a job is some fixed constant, our problem has a polynomial time approximation scheme ; for other special cases we give optimal polynomial time algorithms. Finally, through the relation of our problem to the classic preemptive scheduling problem on multiple machines, we shed some fresh light on what is known in scheduling folklore as the power of preemption.  相似文献   

5.
We study a problem of scheduling a set of n jobs with unit processing times on a set of m multipurpose machines in which the objective is to minimize the makespan. It is assumed that there are two different job types, where each job type can be processed on a unique subset of machines. We provide an optimal offline algorithm to solve the problem in constant time and an online algorithm with a competitive ratio that equals the lower bound. We show that the worst competitive ratio is obtained for an inclusive job-machine structure in which the first job type can be processed on any of the m machines while the second job type can be processed only on a subset of m/2 machines. Moreover, we show that our online algorithm is 1-competitive if the machines are not flexible, i.e., each machine can process only a single job type.  相似文献   

6.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

7.
In this paper, the NP‐hard two‐machine scheduling problem with a single server is addressed. The problem consists of a given set of jobs to be scheduled on two identical parallel machines, where each job must be processed on one of the machines, and prior to processing, the job is set up on its machine using one server; the latter is shared between the two machines. An ant colony optimization (ACO) algorithm is introduced for the problem and its performance was assessed by comparing with an exact solution (branch and bound [B&B]), a genetic algorithm (GA), and simulated annealing (SA). The computational results reflected the superiority of “ACO” in large problems, with a performance similar to SA and GA in smaller problems, while solving the tested problems within a reasonable computational time.  相似文献   

8.
We consider a scheduling problem where jobs have to be carried out by parallel identical machines. The attributes of a job j are: a fixed start time sj, a fixed finish time fj, and a resource requirement rj. Every machine owns R units of a renewable resource necessary to carry out jobs. A machine can process more than one job at a time, provided the resource consumption does not exceed R. The jobs must be processed in a non-preemptive way. Within this setting, the problem is to decide whether a feasible schedule for all jobs exists or not.We discuss such a decision problem and prove that it is strongly NP-complete even when the number of resources are fixed to any value R≥2. Moreover, we suggest an implicit enumeration algorithm which has O(nlogn) time complexity in the number n of jobs when the number m of machines and the number R of resources per machine are fixed.The role of storage layout and preemption are also discussed.  相似文献   

9.
In this paper, we consider the problem of scheduling a set of jobs on a set of identical parallel machines. Before the processing of a job can start, a setup is required which has to be performed by a given set of servers. We consider the complexity of such problems for the minimization of the makespan. For the problem with equal processing times and equal setup times we give a polynomial algorithm. For the problem with unit setup times, m machines and m − 1 servers, we give a pseudopolynomial algorithm. However, the problem with fixed number of machines and servers in the case of minimizing maximum lateness is proven to be unary NP-hard. In addition, recent algorithms for some parallel machine scheduling problems with constant precessing times are generalized to the corresponding server problems for the case of constant setup times. Moreover, we perform a worst case analysis of two list scheduling algorithms for makespan minimization.  相似文献   

10.
This paper is concerned with scheduling independent jobs on m parallel machines in such a way that the makespan is minimized. Each job j is allowed to split arbitrarily into several parts, which can be individually processed on any machine at any time. However, a setup for uninterrupted sj time units is required before any split part of job j can be processed on any machine. The problem is strongly NP-hard if the number m of machines is variable and weakly NP-hard otherwise. We give a polynomial-time -approximation algorithm for the former case and a fully polynomial-time approximation scheme for the latter. AMS Subject Classifications: 68M20 · 90B35 · 90C59  相似文献   

11.
Preemptive scheduling problems on parallel machines are classic problems. Given the goal of minimizing the makespan, they are polynomially solvable even for the most general model of unrelated machines. In these problems, a set of jobs is to be assigned to run on a set of m machines. A job can be split into parts arbitrarily and these parts are to be assigned to time slots on the machines without parallelism, that is, for every job, at most one of its parts can be processed at each time. Motivated by sensitivity analysis and online algorithms, we investigate the problem of designing robust algorithms for constructing preemptive schedules. Robust algorithms receive one piece of input at a time. They may change a small portion of the solution as an additional part of the input is revealed. The capacity of change is based on the size of the new piece of input. For scheduling problems, the supremum ratio between the total size of the jobs (or parts of jobs) which may be re-scheduled upon the arrival of a new job j, and the size of j, is called migration factor. We design a strongly optimal algorithm with the migration factor $1-\frac{1}{m}$ for identical machines. Strongly optimal algorithms avoid idle time and create solutions where the (non-increasingly) sorted vector of completion times of the machines is lexicographically minimal. In the case of identical machines this results not only in makespan minimization, but the created solution is also optimal with respect to any ? p norm (for p>1). We show that an algorithm of a smaller migration factor cannot be optimal with respect to makespan or any other ? p norm, thus the result is best possible in this sense as well. We further show that neither uniformly related machines nor identical machines with restricted assignment admit an optimal algorithm with a constant migration factor. This lower bound holds both for makespan minimization and for any ? p norm. Finally, we analyze the case of two machines and show that in this case it is still possible to maintain an optimal schedule with a small migration factor in the cases of two uniformly related machines and two identical machines with restricted assignment.  相似文献   

12.
Shachnai  Tamir 《Algorithmica》2008,32(4):651-678
Abstract. Modern computer systems distribute computation among several machines to speed up the execution of programs. Yet, setup and communication costs, as well as parallelism constraints, bound the number of machines that can share the execution of a given application, and the number of machines by which it can be processed simultaneously . We study the resulting scheduling problem, stated as follows. Given a set of n jobs and m uniform machines, assign the jobs to the machines subject to parallelism and machine allotment constraints, such that the overall completion time of the schedule (or makespan ) is minimized. Indeed, the multiprocessor scheduling problem (where each job can be processed by a single machine) is a special case of our problem; thus, our problem is strongly NP-hard. We present a (1+ α) -approximation algorithm for this problem, where α ∈ (0,1] depends on the minimal number of machine allotments and the minimal parallelism allowed for any job. Also, we show that when the maximal number of machines that can share the execution of a job is some fixed constant, our problem has a polynomial time approximation scheme ; for other special cases we give optimal polynomial time algorithms. Finally, through the relation of our problem to the classic preemptive scheduling problem on multiple machines, we shed some fresh light on what is known in scheduling folklore as the power of preemption.  相似文献   

13.
This paper considers a two-stage hybrid flowshop scheduling problem in machine breakdown condition. By machine breakdown condition we mean that the machine may not always be available during the scheduling period. Machine failure may occur with a known probability after completing a job. Probability of machine failure depends on the previous processed job. The problem to be studied has one machine at the first stage and M parallel identical machines at the second stage. The objective is to find the optimal job combinations and the optimal job schedule such that the makespan is minimized. The proposed problem is compatible with a large scope of real world situations. To solve the problem, first, we introduce one optimal approach for job precedence when there is one machine in both stages and then provide a heuristic algorithm when there are M machines in stage two. To examine the performance of the heuristic, some experiments used are provided as well.  相似文献   

14.
In this paper, we study an unrelated parallel machine scheduling problem with setup time and learning effects simultaneously. The setup time is proportional to the length of the already processed jobs. That is, the setup time of each job is past-sequence-dependent. The objectives are to minimize the total absolute deviation of job completion times and the total load on all machines, respectively. We show that the proposed problem is polynomially solvable. We also discuss two special cases of the problem and show that they can be optimally solved by lower order algorithms.  相似文献   

15.
Grouping and sequencing PCB assembly jobs with minimum feeder setups   总被引:2,自引:0,他引:2  
Printed circuit boards are manufactured in automated assembly lines, where high-speed placement machines put components on the boards. These machines are frequently bottlenecks in the production. This is true especially in high-mix low-volume environments, where time consuming setup operations of the machines have to be done repeatedly. Therefore, one can improve productivity with a proper setup strategy. The most popular strategies are the so-called group setup strategy and minimum setup strategy. In this paper, we consider the machine setup problem as a combination of a job grouping problem and a minimum setup problem. We formulate this joint problem as an Integer Programming model, where the objective is to minimize the weighted sum of the number of setup occasions and the total number of component feeder changes. We also present and evaluate hybrid algorithms based on both grouping and minimum setup heuristics. The best results are achieved by a method which uses both these strategies simultaneously.  相似文献   

16.
We consider the problem of scheduling a set of non-preemptable jobs on two identical parallel machines such that the makespan is minimized. Before processing, each job must be loaded on a machine, which takes a given setup time. All these setups have to be done by a single server which can handle at most one job at a time. For this problem, we propose a mixed integer linear programming formulation based on the idea of decomposing a schedule into a set of blocks. We compare the results obtained by the model suggested with known heuristics from the literature.  相似文献   

17.
We study a generalized job-shop problem called the body shop scheduling problem (BSSP). This problem arises from the industrial application of welding in a car body production line, where possible collisions between industrial robots have to be taken into account. BSSP corresponds to a job-shop problem where the operations of a job have to follow alternating routes on the machines, certain operations of different jobs are not allowed to be processed at the same time and after processing an operation of a certain job a machine might be unavailable for a given time for operations of other jobs. As main results we will show that for three jobs and four machines the special case where only one machine is used by more than one job is already $\mathcal NP $ -hard. This also implies that the single machine scheduling problem that asks for a makespan minimal schedule of three chains of operations with delays between the operations of a chain is $\mathcal NP $ -hard. On the positive side, we present a polynomial algorithm for the two job case and a pseudo-polynomial algorithm together with an FPTAS  for an arbitrary but constant number of jobs. Hence for a constant number of jobs we fully settle the complexity status of the problem.  相似文献   

18.
We consider the problem of scheduling n independent jobs on m identical machines that operate in parallel. Each job must be processed without interruption for a given amount of time on any one of the m machines. In addition, each job has a release date, when it becomes available for processing, and, after completing its processing, requires an additional delivery time. The objective is to minimize the time by which all jobs are delivered. In the notation of Graham et al. (1979), this problem is noted P|r j|Lmax. We develop a polynomial time approximation scheme whose running time depends only linearly on n. This linear complexity bound gives a substantial improvement of the best previously known polynomial bound (Hall and Shmoys, 1989). Finally, we discuss the special case of this problem in which there is a single machine and present an improved approximation scheme.  相似文献   

19.
We focus on the problem of scheduling n independent jobs on m identical parallel machines with the objective of minimizing total tardiness of the jobs considering a job splitting property. In this problem, it is assumed that a job can be split into sub-jobs and these sub-jobs can be processed independently on parallel machines. We develop several dominance properties and lower bounds for the problem, and suggest a branch and bound algorithm using them. Computational experiments are performed on randomly generated test problems and results show that the suggested algorithm solves problems of moderate sizes in a reasonable amount of computation time.  相似文献   

20.
We consider a scheduling problem where n jobs have to be carried out by m parallel identical machines. The attributes of a job j are a fixed start time sj, a fixed finish time fj, a resource requirement rj, and a value vj. Every machine owns R units of a renewable resource necessary to carry out jobs. A machine can process more than one job at a time, provided the resource consumption does not exceed R. The jobs must be processed in a non-preemptive way. Within this setting, we ask for a subset of jobs that can be feasibly scheduled with the maximum total value. For this strongly NP-hard problem, we first discuss an approximation result. Then, we propose a column generation scheme for the exact solution. Finally, we suggest some greedy heuristics and a restricted enumeration heuristic. All proposed algorithms are implemented and tested on a large set of randomly generated instances. It turns out that the column generation technique clearly outperforms the direct resolution of a natural compact formulation; the greedy algorithms produce good quality solutions in negligible time, whereas the restricted enumeration averages the performance of the greedy methods and the exact technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号