首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solving reliability and redundancy allocation problems via meta-heuristic algorithms has attracted increasing attention in recent years. In this study, a recently developed meta-heuristic optimization algorithm cuckoo search (CS) is hybridized with well-known genetic algorithm (GA) called CS–GA is proposed to solve the reliability and redundancy allocation problem. By embedding the genetic operators in standard CS, the balance between the exploration and exploitation ability further improved and more search space are observed during the algorithms’ performance. The computational results carried out on four classical reliability–redundancy allocation problems taken from the literature confirm the validity of the proposed algorithm. Experimental results are presented and compared with the best known solutions. The comparison results with other evolutionary optimization methods demonstrate that the proposed CS–GA algorithm proves to be extremely effective and efficient at locating optimal solutions.  相似文献   

2.
In this paper, a mathematical formulation is first derived for a homogenous fuzzy series–parallel redundancy allocation problem, where both the system and its subsystems can only take two states of complete perfect and complete failure. Identical redundant components are included in order to achieve desirable system reliability. The components of each subsystem characterized by their cost, weight, and reliability, are purchased from the market under all-unit discount and incremental quantity discount strategies. The goal is to find the optimum combination of the number of components for each subsystem that maximizes the system reliability under total fuzzy cost and weight constraints. An improved fruit fly optimization algorithm (IFOA) is proposed to solve the problem, where a particle swarm optimization, a genetic algorithm, and a Tabu search algorithm are utilized to validate the results obtained. These algorithms are the most common ones in the literature to solve series–parallel redundancy allocation problems. Moreover, design of experiments using the Taguchi approach is employed to calibrate the parameters of the algorithms. At the end, some numerical examples are solved to demonstrate the applicability of the proposed methodology. The results are generally in favor IFOA.  相似文献   

3.
This paper considers single-machine scheduling problems with deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. In addition, the jobs are related by a series–parallel graph. It is shown that for the general linear problem to minimize the makespan, polynomial algorithms exist. It is also shown that for the proportional linear problem of minimization of the total weighted completion time, polynomial algorithms exist, too.  相似文献   

4.
Hybrid electric buses have been a promising technology to dramatically lower fuel consumption and carbon dioxide (CO2) emission, while energy management strategy (EMS) is a critical technology to the improvements in fuel economy for hybrid electric vehicles (HEVs). In this paper, a suboptimal EMS is developed for the real-time control of a series–parallel hybrid electric bus. It is then investigated and verified in a hardware-in-the-loop (HIL) simulation system constructed on PT-LABCAR, a commercial real-time simulator. First, an optimal EMS is obtained via iterative dynamic programming (IDP) by defining a cost function over a specific drive cycle to minimize fuel consumption, as well as to achieve zero battery state-of-charge (SOC) change and to avoid frequent clutch operation. The IDP method can lower the computational burden and improve the accuracy. Second, the suboptimal EMS for real-time control is developed by constructing an Elman neural network (NN) based on the aforementioned optimal EMS, so the real-time suboptimal EMS can be used in the vehicle control unit (VCU) of the hybrid bus. The real VCU is investigated and verified utilizing a HIL simulator in a virtual forward-facing HEV environment consisting of vehicle, driver and driving environment. The simulation results demonstrate that the proposed real-time suboptimal EMS by the neural network can coordinate the overall hybrid powertrain of the hybrid bus to optimize fuel economy over different drive cycles, and the given drive cycles can be tracked while sustaining the battery SOC level.  相似文献   

5.
During financial crises investors manage portfolios with low liquidity, where the paper-value of an asset differs from the price proposed by the buyer. We consider an optimization problem for a portfolio with an illiquid, a risky and a risk-free asset. We work in the Merton's optimal consumption framework with continuous time. The liquid part of the investment is described by a standard Black–Scholes market. The illiquid asset is sold at a random moment with prescribed distribution and generates additional liquid wealth dependent on its paper-value. The investor has a hyperbolic absolute risk aversion also denoted as HARA-type utility function, in particular, the logarithmic utility function as a limit case. We study two different distributions of the liquidation time of the illiquid asset – a classical exponential distribution and a more practically relevant Weibull distribution. Under certain conditions we show the smoothness of the viscosity solution and obtain closed formulae relevant for numerics.  相似文献   

6.
7.
M. M. Tharwat 《Calcolo》2014,51(3):465-484
Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. Sampling theory is one of the most important mathematical tools used in communication engineering since it enables engineers to reconstruct signals from some of their sampled data. The sinc Gaussian sampling technique derived by Qian (Proc Am Math Soc 131:1169–1176, 2002) establishes a sampling technique which converges faster than the classical sampling technique. Schmeisser and Stenger (Sampl Theory Signal Image Process 6:199–221, 2007) studied the associated error analysis. In the present paper we apply a sinc Gaussian technique to compute approximate values of the eigenvalues of Sturm–Liouville problems with eigenvalue parameter in one or two boundary conditions. The error of this method decays exponentially in terms of the number of involved samples. Therefore the accuracy of the new technique is higher than the classical sinc method. Numerical worked examples with tables and illustrative figures are given at the end of the paper.  相似文献   

8.
This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities (LMI). Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.  相似文献   

9.
10.
The primary goal is to describe in a unified fashion the generating series for the cascade connection of any two analytic nonlinear input–output systems. In particular, it will be shown that a single general definition of a composition product can be formulated in terms of formal power series to describe any possible cascade connection of analytic integral operators (Fliess operators) and analytic functions provided that the composite system is well defined and resides in one of these two classes. In each case, the radius of convergence of the interconnection is computed.  相似文献   

11.
This paper studies the stability issue for switched nonlinear systems with input delay and disturbance. It is assumed that for the nominal system an exponential stabilizing controller is predesigned such that the switched system is stable under a certain switching signal, and a piecewise Lyapunov function for the corresponding closed-loop system is known. However, in the presence of input delay and disturbance, the system may be unstable under the same switching signal. For this case, a new Lyapunov–Krasovskii functional is firstly constructed based on the known Lyapunov function. Then, by employing this new functional, a new switching signal satisfying the new average dwell time conditions is constructed to guarantee the input-to-state stability of the system under a certain delay bound. The bound on the average dwell time is closely related to the bound on the input delay. Finally, numerical examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

12.
In this paper, we consider the following fractional Schrödinger–Poissonproblem
(?Δ)su+V(x)u+?u=f(u)inR3,(?Δ)t?=u2inR3,
where 0<st<1 and 2s+2t>3, the potential V(x) is weakly differentiable and fC(R,R). By introducing some new tricks, we prove that the problem admits a ground state solution of Nehari–Pohozaev type under mild assumptions on V and f. The results here extend the existing study.  相似文献   

13.
This paper consists of two main parts. Recognizing the existence of identification errors due to variations of system parameters, the first part is devoted to the verification of the existence of a unique continuous solution of a non-linear vector stochastic differential equation with a random parameter and to the establishment of the stochastic sensitivity equation. Both the a and β-stochastic sensitivity equations are established through the precise definition of stochastic sensitivity.

The remainder of this paper deals with evaluation of quantitative aspects of the sensitivity in the state estimation by using the stochastic sensitivity equation.  相似文献   

14.
Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the L-BFGS, the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the L-BFGS algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.  相似文献   

15.
This article addresses a leader–follower synchronisation problem of networked Lagrangian systems with uncertainties by an iterative learning control approach. The inherent properties of the systems are fully utilised in the controller design, and a directed acyclic graph is sufficient for communication among subsystems. The developed controller contains a proportional-plus-derivative (PD) term and two learning terms. The PD term drives the tracking error to zero, one learning term compensates for the model uncertainties, and the other one is used for disturbance rejection. It is shown that the synchronisation task can be achieved by the proposed controller, and all internal signals are either bounded or norm bounded. The theoretical results are supported by a numerical study.  相似文献   

16.
The Petrov–Galerkin finite-element method with a lumped mass matrix is analyzed. It is stated that in some cases it excessively smoothes the solutions and causes large errors. It is shown that weight functions can be chosen, which eliminate the above-mentioned drawbacks. The corresponding approximations are constructed in the form of systems of ordinary differential equations and finite-difference schemes. The theoretical results are confirmed by calculated data.  相似文献   

17.
18.
This article presents absolute stability conditions for a particular class of Takagi–Sugeno fuzzy control systems. Initially, a Takagi–Sugeno fuzzy control system is transformed into a multivariable Lur’e type system. A simple algorithm for checking the absolute stability of this system is then proposed. Since the key of the proposed algorithm is to solve algebraic Riccati equations, software packages such as MATLAB provides a simple means to check the conditions. The proposed approach does not limit the methods of fuzzification and defuzzification. This article presents several analytical examples to verify the simplicity and efficiency of the proposed approach.  相似文献   

19.
This paper presents a method for dealing with parameter uncertainty in system design which is based on the study of the statistical properties of an ensemble of systems defined by a given structure and by a priori parameter distributions rather than point parameter estimates. It is assumed that the model of the actual system is a random member of the ensemble. The object of the analysis is to design or modify the properties of the ensemble to ensure a high probability of adequate performance of the actual system. The primary statistical function employed is the sample distribution function. This function is used to estimate the true population distribution of a scalar variable chosen to measure the system property of interest. The sample distribution function is constructed from random samples of this figure of merit generated by a suitable digital computer programme. The accuracy of the estimation of the population distribution by the sample distribution is determined by application of statistical results of Kolmogorov and Rényi.  相似文献   

20.
We study the applicability of the discontinuous Petrov–Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding ‘optimal’ test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler–Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号