首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An O(n2) time serial algorithm is developed for obtaining the medial axis transform (MAT) of an n×n image. An O(log n) time CREW PRAM algorithm and an O(log2 n) time SIMD hypercube parallel algorithm for the MAT are also developed. Both of these use O(n2) processors. Two problems associated with the MAT, the area and perimeter reporting problem, are studied. An O(log n) time hypercube algorithm is developed for both of them, where n is the number of squares in the MAT, and the algorithms use O(n2) processors  相似文献   

2.
The transitive closure problem in O(1) time is solved by a new method that is far different from the conventional solution method. On processor arrays with reconfigurable bus systems, two O (1) time algorithms are proposed for computing the transitive closure of an undirected graph. One is designed on a three-dimensional n×n×n processor array with a reconfigurable bus system, and the other is designed on a two-dimensional n2×n2 processor array with a reconfigurable bus system, where n is the number of vertices in the graph. Using the O(1) time transitive closure algorithms, many other graph problems are solved in O(1) time. These problems include recognizing bipartite graphs and finding connected components, articulation points, biconnected components, bridges, and minimum spanning trees in undirected graphs  相似文献   

3.
In the above-titled paper (ibid., vol.12, no.11, p.1088-92, Nov. 1990), parallel implementations of hierarchical clustering algorithms that achieve O(n2) computational time complexity and thereby improve on the baseline of sequential implementations are described. The latter are stated to be O( n3), with the exception of the single-link method. The commenter points out that state-of-the-art hierarchical clustering algorithms have O(n2) time complexity and should be referred to in preference to the O(n3 ) algorithms, which were described in many texts in the 1970s. Some further references in the parallelizing of hierarchic clustering algorithms are provided  相似文献   

4.
An adaptive parallel algorithm for inducing a priority queue structure on an n-element array is presented. The algorithm is extended to provide optimal parallel construction algorithms for three other heap-like structures useful in implementing double-ended priority queues, namely min-max heaps, deeps, and min-max-pair heaps. It is shown that an n-element array can be made into a heap, a deap, a min-max heap, or a min-max-pair heap in O(log n+(n /p)) time using no more than n/log n processors, in the exclusive-read-exclusive-write parallel random-access machine model  相似文献   

5.
A novel discrete relaxation architecture   总被引:1,自引:0,他引:1  
The discrete relaxation algorithm (DRA) is a computational technique that enforces arc consistency (AC) in a constraint satisfaction problem (CSP). The original sequential AC-1 algorithm suffers from O(n3m3) time complexity, and even the optimal sequential AC-4 algorithm is O (n2m2) for an n-object and m-label DRA problem. Sample problem runs show that these algorithms are all too slow to meet the need for any useful, real-time CSP applications. A parallel DRA5 algorithm that reaches a lower bound of O(nm) (where the number of processors is polynomial in the problem size) is given. A fine-grained, massively parallel hardware computer architecture has been designed for the DRA5 algorithm. For practical problems, many orders of magnitude of efficiency improvement can be reached on such a hardware architecture  相似文献   

6.
A distributed knot detection algorithm for general graphs is presented. The knot detection algorithm uses at most O(n log n+m) messages and O(m+n log n) bits of memory to detect all knots' nodes in the network (where n is the number of nodes and m is the number of links). This is compared to O(n2) messages needed in the best algorithm previously published. The knot detection algorithm makes use of efficient cycle detection and clustering techniques. Various applications for the knot detection algorithms are presented. In particular, its importance to deadlock detection in store and forward communication networks and in transaction systems is demonstrated  相似文献   

7.
Even though exact algorithms exist for permutation routine of n2 messages on a n×n mesh of processors which require constant size queues, the constants are very large and the algorithms very complicated to implement. A novel, simple heuristic for the above problem is presented. It uses constant and very small size queues (size=2). For all the simulations run on randomly generated data, the number of routing steps that is required by the algorithm is almost equal to the maximum distance a packet has to travel. A pathological case is demonstrated where the routing takes more than the optimal, and it is proved that the upper bound on the number of required steps is O(n2). Furthermore, it is shown that the heuristic routes in optimal time inversion, transposition, and rotations, three special routing problems that appear very often in the design of parallel algorithms  相似文献   

8.
Two arrays of numbers sorted in nondecreasing order are given: an array A of size n and an array B of size m, where n<m. It is required to determine, for every element of A, the smallest element of B (if one exists) that is larger than or equal to it. It is shown how to solve this problem on the EREW PRAM (exclusive-read exclusive-write parallel random-access machine) in O(logm logn/log log m) time using n processors. The solution is then extended to the case in which fewer than n processors are available. This yields an EREW PRAM algorithm for the problem whose cost is O(n log m, which is O(m)) for nm/log m. It is shown how the solution obtained leads to an improved parallel merging algorithm  相似文献   

9.
Let ξ be a random variable over a finite set with an arbitrary probability distribution. Improvements to a fast method of generating sample values for ξ in constant time are suggested. The proposed modification reduces the time required for initialization to O( n). For a simple genetic algorithm, this improvement changes an O(g n 1n n) algorithm into an O(g n) algorithm (where g is the number of generations, and n is the population size)  相似文献   

10.
Parallel algorithms on SIMD (single-instruction stream multiple-data stream) machines for hierarchical clustering and cluster validity computation are proposed. The machine model uses a parallel memory system and an alignment network to facilitate parallel access to both pattern matrix and proximity matrix. For a problem with N patterns, the number of memory accesses is reduced from O(N 3) on a sequential machine to O(N2) on an SIMD machine with N PEs  相似文献   

11.
An algorithm for convolving a k×k window of weighting coefficients with an n×n image matrix on a pyramid computer of O(n2) processors in time O(logn+k2), excluding the time to load the image matrix, is presented. If k=Ω (√log n), which is typical in practice, the algorithm has a processor-time product O(n 2 k2) which is optimal with respect to the usual sequential algorithm. A feature of the algorithm is that the mechanism for controlling the transmission and distribution of data in each processor is finite state, independent of the values of n and k. Thus, for convolving two {0, 1}-valued matrices using Boolean operations rather than the typical sum and product operations, the processors of the pyramid computer are finite-state  相似文献   

12.
Optimal broadcasting on the star graph   总被引:2,自引:0,他引:2  
The star graph has been show to be an attractive alternative to the widely used n-cube. Like the n-cube, the star graph possesses rich structure and symmetry as well as fault tolerant capabilities, but has a smaller diameter and degree. However, very few algorithms exists to show its potential as a multiprocessor interconnection network. Many fast and efficient parallel algorithms require broadcasting as a basic step. An optimal algorithm for one-to-all broadcasting in the star graph is proposed. The algorithm can broadcast a message to N processors in O(log2 N) time. The algorithm exploits the rich structure of the star graph and works by recursively partitioning the original star graph into smaller star graphs. In addition, an optimal all-to-all broadcasting algorithm is developed  相似文献   

13.
The design is discussed of distributed algorithms for the single-source shortest-path problem to run on an asynchronous directed network in which some of the edges may be associated with negative weights, and thus in which a cycle of negative total weight may also exist. The only existing solution in the literature for this problem is due to K.M. Chandy and J. Misra (1982), and it has, in the worst case, an unbounded message complexity. A synchronous version of the Chandy-Misra algorithm is described and studied, and it is proved that for a network with m edges and n nodes, the worst case message and time complexities of this algorithm are O(mn ) and O(n), respectively. This algorithm is then combined with an efficient synchronizer to yield an asynchronous protocol that retains the same message and time complexities  相似文献   

14.
Out-of-roundness problem revisited   总被引:4,自引:0,他引:4  
The properties and computation of the minimum radial separation (MRS) standard for out-of-roundness are discussed. Another standard out-of-roundness measurement called the minimum area difference (MAD) center is introduced. Although the two centers have different characteristics, the approach to finding both centers shares many commonalities. An O(n log n+k) time algorithm which is used to compute the MRS center is presented. It also computes the MAD center of a simple polygon G, where n is the number of vertices of G, and k is the number of intersection points of the medial axis and the farthest-neighbor Voronoi diagram of G. The relationship between MRS and MAD is discussed  相似文献   

15.
An approach to vertical partitioning in relational databases in which the attributes of a relation are partitioned according to a set of transactions is proposed. The objective of vertical partitioning is to minimize the number of disk accesses in the system. Since transactions have more semantic meanings than attributes, this approach allows the optimization of the partitioning based on a selected set of important transactions. An optimal binary partitioning (OBP) algorithm based on the branch and bound method is presented, with the worst case complexity of O(2n), where n is the number of transactions. To handle systems with a large number of transactions, an algorithm BPi with complexity varying from O(n) to O(2n) is also developed. The experimental results reveal that the performance of vertical partitioning is sensitive to the skewness of transaction accesses. Further, BPi converges rather rapidly to OBP. Both OBP and BPi yield results comparable with that of global optimum obtained from an exhaustive search  相似文献   

16.
Parallel algorithms for several important combinatorial problems such as the all nearest smaller values problem, triangulating a monotone polygon, and line packing are presented. These algorithms achieve linear speedups on the pipelined hypercube, and provably optimal speedups on the shuffle-exchange and the cube-connected-cycles for any number p of processors satisfying 1⩽pn/((log3n)(loglog n)2), where n is the input size. The lower bound results are established under no restriction on how the input is mapped into the local memories of the different processors  相似文献   

17.
A hypercube algorithm to solve the list ranking problem is presented. Let n be the length of the list, and let p be the number of processors of the hypercube. The algorithm described runs in time O(n/p) when n=Ω(p 1+ε) for any constant ε>0, and in time O(n log n/p+log3 p) otherwise. This clearly attains a linear speedup when n=Ω(p 1+ε). Efficient balancing and routing schemes had to be used to achieve the linear speedup. The authors use these techniques to obtain efficient hypercube algorithms for many basic graph problems such as tree expression evaluation, connected and biconnected components, ear decomposition, and st-numbering. These problems are also addressed in the restricted model of one-port communication  相似文献   

18.
In an n-dimensional hypercube Qn, with the fault set |F|<2n-2, assuming S and D are not isolated, it is shown that there exists a path of length equal to at most their Hamming distance plus 4. An algorithm with complexity O (|F|logn) is given to find such a path. A bound for the diameter of the faulty hypercube Qn-F, when |F|<2n-2, as n+2 is obtained. This improves the previously known bound of n+6 obtained by A.-H. Esfahanian (1989). Worst case scenarios are constructed to show that these bounds for shortest paths and diameter are tight. It is also shown that when |F|<2n-2, the diameter bound is reduced to n+1 if every node has at least 2 nonfaulty neighbors and reduced to n if every node has at least 3 nonfaulty neighbors  相似文献   

19.
A parallel sorting algorithm for sorting n elements evenly distributed over 2d p nodes of a d-dimensional hypercube is presented. The average running time of the algorithm is O((n log n)/p+p log 2n). The algorithm maintains a perfect load balance in the nodes by determining the (kn/p)th elements (k1,. . ., (p-1)) of the final sorted list in advance. These p-1 keys are used to partition the sorted sublists in each node to redistribute data to the nodes to be merged in parallel. The nodes finish the sort with an equal number of elements (n/ p) regardless of the data distribution. A parallel selection algorithm for determining the balanced partition keys in O(p log2n) time is presented. The speed of the sorting algorithm is further enhanced by the distance-d communication capability of the iPSC/2 hypercube computer and a novel conflict-free routing algorithm. Experimental results on a 16-node hypercube computer show that the sorting algorithm is competitive with the previous algorithms and faster for skewed data distributions  相似文献   

20.
The job scheduling problem in a partitionable mesh-connected system in which jobs require square meshes and the system is a square mesh whose size is a power of two is discussed. A heuristic algorithm of time complexity O(n(log n+log p)), in which n is the number of jobs to be scheduled and p is the size of the system is presented. The algorithm adopts the largest-job-first scheduling policy and uses a two-dimensional buddy system as the system partitioning scheme. It is shown that, in the worst case, the algorithm produces a schedule four times longer than an optimal schedule, and, on the average, schedules generated by the algorithm are twice as long as optimal schedules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号