首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of serrated grain boundaries on creep crack growth is investigated using an austenitic 21Cr-4Ni-9Mn steel principally at 700° C. The relationship between the microstructure of specimens and the crack growth behaviour is discussed. The creep crack growth rate in the specimens with a surface notch is relatively reduced by serrated grain boundaries especially in the early stage of crack growth. The life of crack propagation in the specimens with serrated grain boundaries is longer compared with that of the specimens with straight grain boundaries. It is confirmed in the surface crack growth of smooth round bar specimens crept at 700° C that serrated grain boundaries are effective in retarding the growth of a grain-boundary crack less than about 4×10–4 m long, and that this effect decreases with increasing crack length. It is suggested that crack deflection due to serrated grain boundaries caused a decrease in the stress intensity factor of the grain-boundary crack and resulted in a decrease of the crack growth rate in the steel. The crack arrest at the deflection points and the circumvention of crack path on the serrated grain-boundaries may also contribute to the retardation of the grain-boundary crack growth during creep. Further, it is deduced from the experimental results on the notched specimens that the creep fracture is caused by the linkage of the main crack to many microcracks and voids on the grain-boundary at 900°C.  相似文献   

2.
The effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation were studied in coarse-grained polycrystalline aluminum specimens whose grain boundary microstructures were analyzed by SEM-EBSD/OIM technique. Fatigue crack nucleation occurred mainly along grain boundaries and depended strongly on both the grain boundary character and grain boundary configuration with respect to the persistent slip bands. However, it was little dependent on the geometrical arrangements between the grain boundary plane and the stress axis. Particularly, random boundaries become preferential sites for fatigue crack nucleation. The fatigue cracks were also observed at CSL boundaries when the grain-boundary trace on the specimen surface was parallel to persistent slip bands. On the other hand, no intergranular fatigue cracks were observed at low-angle boundaries. The fatigue cracks were observed at triple junctions as well as grain boundaries. Their nucleation considerably occurred at triple junctions where random boundaries were interconnected. The grain boundary engineering for improvement in fatigue property was discussed on the basis of the results of the structure-dependent intergranular and triple junction fatigue crack nucleation.  相似文献   

3.
The change in the fractal dimension of the grain boundaries during creep was investigated using an austenitic SUS304 steel at 973 K. The fractal dimension of the grain-boundary surface profile (the fractal dimension of the grain boundaries, D, 1 < D < 2) in the plane parallel to the tensile direction (in the parallel direction) and in the transverse direction, was examined on specimens deformed up to rupture (about 0.30 creep strain). Grain boundaries became serrated and the fractal dimension of the grain boundaries increased with increasing creep strain, because the density of slip lines which formed ledges and steps on grain boundaries increased as the creep strain increased. The increase in the fractal dimension due to creep deformation was slightly larger under the higher stress (118 MPa) than under the lower stress (98 MPa), while the increase of the fractal dimension with strain was a little larger in the specimens tensile-strained at room temperature (293 K) than in the crept specimens. These results were explained by the grain-boundary sliding and the diffusional recovery near grain boundaries, which lowered the increase of the fractal dimension with the creep strain. The fractal dimension of the grain boundaries in the parallel direction was slightly larger than that in the transverse direction in both creep at 973 K and tensile deformation at room temperature, especially at the large strains. This could be correlated with the shape change of the grains by creep or plastic deformation. Grain-boundary cracks were principally initiated at grain-boundary triple junctions in creep, but ledges, steps and carbide precipitates on serrated grain boundaries were not preferential nucleation sites for the cracks.  相似文献   

4.
Effects of high-temperature ageing on the creep-rupture properties of cobalt-base L-605 alloys were investigated at 1089 and 1311 K in air. The specimens with serrated grain boundaries and those with normal straight grain boundaries were aged for 1080ksec at 1273 or 1323 K to cause the matrix precipitates of tungsten-rich b c c phase and M6C carbide. The creep-rupture strength of both specimens were improved by the high-temperature ageing. The rupture strength at 1311 K was the highest in the specimens with serrated grain boundaries aged at 1273 K, while the specimens with straight grain boundaries aged at 1273 K of the highest matrix hardness had the highest rupture strength at 1089 K. The high-temperature ageing did not decrease the rupture ductility of specimens. The ruptured specimens with serrated grain boundaries exhibited a ductile grain-boundary fracture surface which consisted of dimple patterns and steps, regardless of whether high-temperature ageing was carried out. The fracture mode of the specimens with straight grain boundaries was changed from the brittle grainboundary fracture to the ductile one similar to that of the specimens with serrated grain boundaries by high-temperature ageing, since large grain-boundary precipitates which gave nucleation sites of dimples were formed during the ageing. The grain-boundary cracks initiated in the early stage of creep (transient creep regime) in both non-aged and aged specimens of L-605 alloys in creep at 1089 and 1311 K, although the time to crack initiation is shorter in the specimens with straight grain boundaries than in those with serrated grain boundaries. Thus, the period of crack growth and linkage occupied most of the rupture life. The strengthening mechanisms of the aged specimens were also discussed.  相似文献   

5.
The effects of temperature and grain size on the deformation and fracture behaviour of recrystallized Ni3Al doped with boron were investigated by tensile tests at temperatures up to 973 K as a function of grain sizes from 1.6 to 105m. The yield stress showed a positive temperature dependence to a peak temperature in somewhat different manners depending on the grain size. For coarse-grained specimens, a rapid drop in elongation was observed with increasing temperature. The predominant fracture mode changed with temperature from the transgranular fracture of {1 1 1} cracking to brittle intergranular fracture. This embrittlement at elevated temperatures was considered to occur by a high stress concentration at grain boundaries arising from increased flow stress level and the occurrence of grain boundary sliding (GBS). In contrast, the elongation was not so markedly decreased with temperature for intermediate- and fine-grained specimens which exhibited ductile intergranular fracture and cavitation fracture, respectively, at elevated temperatures, and a slant-type fracture and cup-cone fracture, respectively, at low temperatures. The suppression of serious high-temperature embrittlement for intermediate-grained specimens was explained in terms of the slow propagation of a crack formed by GBS, owing to stress relaxation by dynamic recrystallization (DR) and plastic deformation. In the case of ultra-fine-grained specimens a large elongation was developed at elevated temperatures, which was interpreted as that the further occurrence of DR with increasing volume fraction of grain boundaries reduces the cavitation promoted by GBS, and that the limited sliding length due to extremely small grain diameter raises the stress for cavity formation.  相似文献   

6.
In situ observations of crack propagation in sulfur-doped coarse-grained nickel were performed for the specimens with grain boundary microstructure pre-determined by SEM/EBSD analysis. The role of grain boundary microstructure was studied in the crack propagation in nickel embrittled by grain boundary segregation of sulfur. It was found that the main crack tends to predominantly propagate along random boundaries, and the crack propagation rate can be locally accelerated at the grain boundary network with a high connectivity of random boundaries. On the other hand, the cracks can propagated along fracture-resistant low-Σ coincidence site lattice (CSL) boundary only when the trace of the grain boundary is arranged being almost parallel to slip bands in the adjacent grains. The local crack propagation rate was found to become lower when a crack propagated along low-Σ CSL boundaries. Moreover, when the crack propagation is inhibited by low-Σ CSL boundaries, the branching of propagating crack occurs at partially cracked triple junctions. The crack propagation can locally slow down due to the occurrence of crack branching. The optimum grain boundary microstructure for the control of sulfur segregation-induced brittle fracture is discussed on the basis of new findings obtained from the in situ observations on crack propagation and fracture processes in polycrystalline nickel.  相似文献   

7.
The effects of serrated grain boundaries on the creep-rupture properties of wrought cobaltbase HS-21 alloys were investigated at 1311 and 1422 K. The amount of grain-boundary sliding and the initiation and growth of grain-boundary cracks were also examined during creep at 1311 K. Specimens with serrated grain boundaries exhibited longer rupture life and larger rupture ductility than those with straight grain boundaries, but these specimens had almost the same rupture life and rupture ductility under lower stresses at 1422 K, because serrated grain boundaries were also formed in specimens with originally straight grain boundaries. The average amount of grain-boundary sliding during creep at 1311 K increased with time (or with creep strain), but was almost the same in both specimens with serrated grain boundaries and those with straight grain boundaries at the same creep strain. Grain-boundary cracks or voids initiated in the early stage of creep in those specimens at 1311 K. Therefore, the strengthening by serrated grain boundaries at high temperatures above about 1311 K was attributed to the retardation of growth and linkage of grain-boundary cracks and voids.  相似文献   

8.
The effect of grain-boundary strengthening on the creep-rupture strength by modification of the grain-boundary configuration is studied using austenitic 21 Cr-4Ni-9Mn steel in the temperature range from 600 to 1000° C in air. Grain-boundary sliding is also examined on a steel with serrated grain boundaries during creep at 700° C. The improvement of creep-rupture strength by the strengthening of grain boundaries is observed at high temperatures above 600° C. The 1000 h rupture strength of steels with serrated grain boundaries is considerably higher than that of steels with straight grain boundaries, especially at 700 and 800° C. The strengthening by serrated grain boundaries is effective in retarding both the crack initiation and the crack propagation at 700° C, while it does not improve the life to crack initiation at 900° C. Grain-boundary sliding is considerably inhibited by the strengthening of grain boundaries at 700° C. The amount of it in steels with serrated grain boundaries is less than about one-third of that of steels with straight grain boundaries at the same creep strain. The stress dependence of grain-boundary sliding rate in the steady-state regime is also examined from the steels with these two types of grain-boundary configuration.  相似文献   

9.
The improvement of creep-rupture properties by serrated grain boundaries is investigated using wrought cobalt-based HS-21 alloys in the temperature range 816 to 1038° C (1500 to 1900°F). Serrated grain-boundaries are produced in the early stage of the grain-boundary reaction (GBR) by a heat treatment. Specimens with serrated grain boundaries have superior creep-rupture properties compared with those with normal straight grain boundaries. The rupture lives of specimens with serrated grain boundaries are more than twice as long as those of specimens with straight grain boundaries. The rupture elongation is considerably improved by serrated grain boundaries especially at lower temperatures. A ductile grain-boundary fracture is observed in specimens with serrated grain boundaries, while brittle grain boundary facets prevail in specimens with straight grain boundaries.  相似文献   

10.
An energy balance method to calculate the initiation of crack at triple junctions in nanocrystalline materials with the finest grains is developed. In the steady state of crack initiation, work done by an applied stress is considered to be dissipated as heat by specific rotational deformation, grain boundary sliding and diffusion. The stress field at crack tips, the energies of rotational deformation, grain boundary sliding and grain boundary diffusion are calculated. The analysis demonstrates that the existence of finest grains will lead to enhanced local fracture toughness.  相似文献   

11.
Plastic deformation and fracture in aluminum polycrystalline aggregate were investigated experimentally. A series of tensile specimens with a single edge crack were made of coarse-grained aluminum plates. The in-plane moiré technique was used to quantitatively obtain the deformation field around the crack tip. The strain field ahead of the crack tip prior to crack growth, as well as grain rotations during the course of plastic deformation, were evaluated from the corresponding moiré fringe patterns. The results of this study show that for small plastic deformation, grain rotation starts to take place at the very beginning of the plastic deformation and increases proportionally with plastic strain. The plastic strain ahead of the crack tip prior to crack growth drops significantly with decreasing average grain size of the specimen. Grain boundary sliding was also observed at some of the grain boundaries where the resolved shear stress had reached a critical value. The results also show that the crack propagated with maximum velocity at the center of a grain and assumed much slower velocity near grain boundaries or grain boundary junctions. The influence of the deformation rate is also discussed in terms of the stress relaxation.  相似文献   

12.
A constitutive model is developed for grain boundary sliding (GBS) at serrated grain boundaries. Based on a previously developed GBS model, using the dynamics of grain boundary dislocation pile-up, the present model takes the average of the sliding rate over the characteristic dimensions of grain boundary serrations. Thus, a geometric factor is introduced to account for the effects of serration wave length and amplitude on the GBS rate, as compared to the GBS rate at planar boundaries. By considering the role of grain boundary shear stress in stress balancing, the proposed model removes the singularity at planar boundaries which exists in the diffusion-controlled GBS model at serrated grain boundaries. The modified model describes very well the transient creep of complex Ni-base superalloys with and without grain boundary serrations and should be suitable for other engineering alloys (with the exception of columnar grained and single crystal alloys).  相似文献   

13.
Type 316 austenitic steel has been heat-treated to produce a range of grain sizes and then creep-tested at 625° C at various stresses so as to examine the nucleation and the factors which effect the nucleation of grain-boundary triple point or wedge cracks. An internal marker technique was used to evaluate the extent of the grain-boundary sliding in relation to the total creep strain. Triple point crack nucleation occurred over the entire range of grain sizes and stresses examined when the product of the stress and grain-boundary displacement reached a critical value; the effective surface energy for grain boundary fracture, estimated using an expression derived by Stroh, was in approximate agreement with the surface free energy value indicating that only limited relaxation occurred by plastic deformation. The first cracks were observed to form along grain boundary facets perpendicular to the applied stress direction and with the sliding grain boundaries at high angles (60 to 80°) to the crack growth direction. Subsequent cracking occurred under conditions which deviated slightly from this initial condition, and the increase in crack density with strain was expressed in terms of geometrical factors which take account of the orientation effects.  相似文献   

14.
This paper deals with the effect of anisotropy on fracture processes of a directionally solidified superalloy, Mar-M247, under a push–pull creep-fatigue condition at high-temperature. Three kinds of specimen were cut from a cast plate such that their axes possess angles of 0°, 45° and 90° with respect to the 〈001〉 orientation that is aligned parallel to the solidification direction (also to the grain boundaries and primary dendrite axis); these specimens being denoted the 0° specimen, the 45° specimen, and the 90° specimen, respectively. The tests were conducted at 1273  K (1000 °C) in air under equal magnitudes of the range of a Δ J -related parameter, Δ W c , which represents the driving force for crack growth in creep-fatigue. Although the grain boundaries are macroscopically parallel to the solidification direction, they are wavy or serrated microscopically. Small cracks nucleate along parts of the grain boundaries perpendicular to the stress axis in all specimens. The 90° specimen has the shortest crack initiation life and the 0° specimen has the longest. In the 90° and 45° specimens, intergranular cracks continue to nucleate and a main crack is formed along the grain boundary due to the frequent coalescence of small cracks. In the 0° specimen, cracks grow into the grain, and transgranular cracks coalesce along the primary dendrite or grain boundary. The 0° specimen exhibits the slowest crack growth rate and the 90° specimen the fastest. These differences in the initiation and growth behaviour of small cracks cause the longest failure life in the 0° specimen and the shortest in the 90° specimen.  相似文献   

15.
A physical model of wedge crack formation at triple junctions in polycrystalline materials is analyzed in this paper. The origin of the crack formation is the sliding of grain boundaries meeting at triple junctions. Based on the dislocation model of grain boundaries, the sliding is attributed to the gliding of grain boundary dislocations (GBDs). Consequently, the resulting crack formation can be analyzed theoretically in terms of the energetics of the piling up of interacting GBDs. The model permits the determination of crack stability or instability as well as the length of the stable crack. Results are obtained in this paper for polycrystalline ice and aluminium.  相似文献   

16.
The effects of grain boundary configuration and creep conditions on the fractal dimension of the grain boundary fracture (D f) were investigated using commercial cobalt-based heat resistant alloys, namely, HS-21 and L-605 alloys. Creep-rupture experiments were carried out under the initial creep stresses of 19.6–176 MPa in the temperature range from 1089–1422 K in air. The value of D f was larger in specimens with serrated grain boundaries than in those with straight grain boundaries in the HS-21 alloy under the same creep condition, and the difference in the value of D f between these specimens was large in the scale range of the analysis which was less than about one grain boundary length. However, there was almost no difference in the value of D f between the specimens with serrated grain boundaries and those with straight grain boundaries in the L-605 alloy, because there was no obvious difference in the microstructure between these specimens. The value of D f increased with decreasing creep stress in the scale range of the fractal analysis larger than about one grain boundary length in both HS-21 and L-605 alloys, while the stress dependence of D f was larger in the HS-21 alloy. The stress dependence of D f was explained by the stress dependence on the number of grain boundary microcracks linked to the fracture surface. The value of D f estimated in the scale range smaller than about one grain boundary length showed essentially no stress dependence in both L-605 and HS-21 alloys.  相似文献   

17.
Grain-boundary configuration in heat-treated specimens and fracture surface roughness in creep-ruptured specimens of several kinds of metallic material were quantitatively evaluated on the basis of fractal geometry. Correlations between the fractal dimension of grain boundary, that of fracture surface profile, the creep-rupture properties and the fracture mechanisms of the alloys are discussed. In heat-resistant alloys, the fractal dimension of a nominally serrated grain boundary was always larger than that of a straight grain boundary in the same alloy. The relative importance of the ruggedness of grain boundaries was estimated by the fractal dimension difference between these two grain boundaries. There was a quantitative relationship between the increase of the fractal dimension of the grain boundary and the improvement of rupture ductility and rupture strength owing to grain-boundary serration in the alloy. A similar correlation was also found between the increase in the fractal dimension of the fracture surface profile and the improvement of the creep-rupture properties, since in some cases the fractal dimension of the fracture surface profile was correlated with that of the grain boundary. Both grain boundary and fracture surface profile were assumed to exhibit a fractal nature between one grain boundary length (upper bound) and an interatomic spacing (lower bound). In carbon steels with ferrite-pearlite structure, according to the increase in pearlite volume fraction, the rupture ductility decreased and the fracture mechanism changed from transgranular fracture in pure iron and low-carbon steels to intergranular fracture at ferrite-pearlite grain boundaries in medium-carbon steels, and further to intergranular fracture at pearlite grain boundaries in high-carbon steels. The correspondence between the fractal dimension of the grain boundary and that of the fracture surface was confirmed in ruptured specimens of ferrite-pearlite steels when the grain boundary was the fracture path.  相似文献   

18.
In this study, the role of grain boundary sliding behaviour on the creep deformation characteristics of discontinuously reinforced composites is investigated numerically together with the other influencing parameters: reinforcement aspect ratio, grain size and interfacial behaviour between the reinforcement and the matrix. The results obtained for the composites are compared with results obtained for a polycrystalline matrix material having identical grain size and morphology. The results indicate that, with sliding grain boundaries, the stress enhancement factor for the composites is much higher than the one observed for the matrix material and its value increases with increasing reinforcement aspect ratio, reduction in the matrix grain size and sliding interfacial behaviour between the reinforcement and the matrix. In the composites, the contribution of the grain boundary sliding to overall steady state creep rates occurs in a larger stress range in comparison to the matrix material. Experimentally observed higher creep exponent values or stress dependent creep exponent values for the composites could not be explained solely by the mechanism of grain boundary sliding. However, experimentally observed large scale triple point grain boundary cavitation in the composites could occur due to large grain rotations resulting from grain boundary sliding.  相似文献   

19.
Abstract

Polycrystalline nickel based superalloys are prone to grain boundary attack by atmospheric oxygen either in the form of time dependent intergranular cracking during dwell time within a low cycle fatigue loading spectrum, known as hold time cracking, or in the form of intercrystalline oxidation at higher temperatures. In the case of hold time cracking of IN718 it has been shown that the crack propagation velocity is determined by local microstructure and environmental conditions, reaching values up to 10 μm s?1 under four-point bending conditions at 650°C in air. The governing mechanism for this kind of time dependent quasi-brittle intergranular failure has been recognised to be 'dynamic embrittlement', i.e. diffusion of the embrittling element into the elastic stress field ahead of the crack tip, followed by stepwise decohesion. In a very similar way to intercrystalline oxidation, this damage mechanism seems to depend on the local microstructure. Assuming that oxygen grain boundary diffusivity is particularly slow for special coincident site lattice (CSL) grain boundaries, bending and oxidation experiments were carried out using specimens that underwent successive steps of deformation and annealling, i.e. grain boundary engineering. It has been shown that an increase in the fraction of special CSL grain boundaries yields a higher resistance to both intercrystalline oxidation and hold time cracking by dynamic embrittlement.  相似文献   

20.
The possible formation of small stable cracks (crack precursors) at grain triple points in polycrystalline S2 ice subjected to stresses below that required to nucleate grain-size cracks is examined theoretically at –10° C. The investigation is based on the theory that stress concentrations can arise from the crystal elastic anisotropy and the pile-up of grain boundary dislocations at the triple point. Using an energy approach, numerical simulations of a model show that (i) small stable cracks can initiate from triple points under small stresses, (ii) unstable Griffith cracks can also nucleate, (iii) the smallest nucleation stresses are weakly dependent on hydrostatic compression and crystal orientation, and obey approximately the Hall-Petch relation with respect to the mean grain size, (iv) the crack to grain boundary length ratios are statistically distributed rather than constant, and (v) crack nucleation is strongly influenced by the orientations of the grain boundaries with respect to the applied stress and by the grain boundary dislocation configurations (positive or negative).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号