首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用NMP/CS(2体积比1︰1)混合溶剂,在微波辐射下对五彩湾煤进行溶胀处理,并将原煤和微波溶胀煤样进行对比表征和加氢液化实验,考察了液化反应温度、反应气氛、溶胀剂对液化效果的影响。结果表明:微波溶胀后,煤样孔隙结构显著增加,结构发生变化。在液化条件是温度450℃、氢初压6.0 MPa、溶煤比1.75︰1和反应时间60 min,油产率和转化率分别是原煤55.02%和76.76%,微波溶胀煤74.03%和84.78%。  相似文献   

2.
超声波辐射下溶胀改善煤液化性能的研究   总被引:1,自引:0,他引:1  
以山东兖州局的北宿煤 ( BS)、兴隆庄煤 ( XLZ)、枣庄局的柴里煤 ( CL)等为研究用煤 ,首先在自然条件下使用吡啶溶剂进行原煤样的溶胀 ,然后利用超声波仪 ,在 40 k Hz和 5 0 0 W辐射功率和室温的条件下 ,进行超声波辐射作用下的吡啶溶剂溶胀 .经过对脱除溶剂后溶胀煤的加氢液化实验、低温干馏焦油产率测定、挥发分产率测定及体积溶胀率的测定 ,结果表明该三种原煤具有良好的可溶胀性能 ,溶胀煤均具有良好的加氢液化性能 .在 H2 冷态压力 8.2 MPa,40 0℃ ,Fe SO4·7H2 O和升华 S作催化剂、反应 1 .5 h的液化实验条件下 ,自然溶胀煤的液化油产率比原煤增加 1 2%~ 2 5 % ,北宿溶胀煤的液化油产率达到 69.76% .辐射溶胀后的溶胀煤与自然溶胀煤比较 ,在如上所述同样的液化条件下 ,兴隆庄煤的液化油产率增加了 2 2 % ,并且煤的总转化率也增加了 .实验数据表明 ,对于以提高煤加氢液化反应活性为目的的研究 ,当超声波辐射的频率和功率一定时 ,辐射时间对于改善煤样加氢液化的性能存在着最适宜值 ,这一最适宜值与煤的变质程度有直接关系 .  相似文献   

3.
为探究微波处理对五彩湾煤脱钠提质的影响,使用微波炉及电加热炉对五彩湾煤进行水洗脱钠后并对水洗后五彩湾煤进行微波和传统鼓风干燥试验,使用电感耦合等离子体原子发射光谱仪对原煤及水洗煤样进行Na含量分析。研究结果表明,五彩湾煤中钠元素主要以水溶性钠形式存在。煤样经200℃微波加热水洗及传统热风干燥后脱钠率可达到51.6%,相同条件下微波水洗脱钠率高于传统电加热水洗脱钠率。传统电加热水洗后煤样微波干燥的条件下,总脱钠率随微波功率增加而增加,200℃微波干燥条件下最佳停留时间为10 min。相同条件下微波干燥脱钠率较传统热风干燥脱钠率高。  相似文献   

4.
选择6种性质不同的溶剂作为溶胀剂,对烟煤进行了溶胀预处理。对溶胀前后煤样进行了形貌分析、红外分析及溶解度参数测定,并考察了直接加氢液化效果。结果表明,溶剂溶胀预处理未破坏煤大分子结构,而煤的微观形貌变得疏松。所选6种溶剂中,N,N-二甲基甲酰胺(DMF)与煤二者之间的溶解度参数差值最小,DMF对煤溶胀效果也最好,溶胀度达1.71。同时,6种溶胀煤中,经DMF溶胀煤样(C_(DMF))的溶解度参数值最低,直接液化性能最好。相比于原煤(C_R),C_(DMF)的溶解度参数降低了2.73%,气产率降低了89.71%,液产率和转化率分别提高了27.48%和5.35%。  相似文献   

5.
采用四种咪唑基三氟甲磺酸盐离子液体(ILs),分别对伊犁煤进行自然溶胀和微波辅助溶胀.结果表明:ILs微波辅助溶胀煤效果明显优于ILs自然溶胀煤效果.经ILs微波辅助溶胀后,煤的大分子结构虽然没有发生变化,但煤微观结构变得更为疏松,外观呈层状结构;此外,ILs自然溶胀煤需24h才能达到平衡,而在微波辅助条件下ILs溶胀煤达平衡仅需20min;与自然溶胀相比,四种ILs在微波辅助溶胀,溶胀度分别高出7%,23%,37%和63%;热解动力学表明,与原煤样相比,自然溶胀和微波辅助溶胀煤样的活化能分别降低了8.00%和15.54%.  相似文献   

6.
高惰质组分五彩湾煤直接液化性能研究   总被引:2,自引:1,他引:1  
以新疆五彩湾煤为研究对象,进行了煤质和热解分析,考察了溶煤比、反应时间、氢初压和反应温度对其加氢液化效果的影响.结果表明,尽管五彩湾煤惰质组含量高达81.5%,镜质组最大反射率达到0.73%,挥发分低于37%,H/C仅为0.59,但在氢初压仅为6.0MPa,溶煤比1.75和反应时间60min条件下,其最佳液化温度为450℃,油产率和转化率分别达到55.20%和76.76%,仍然具有良好的液化性能.  相似文献   

7.
在固定床反应器中考察了压力、K_2CO_3和不同气氛对不连沟煤热解特性的影响,结果表明:在N_2气氛、700℃条件下,热解压力由常压升至3.5MPa,原煤和负载催化剂煤样的热解特性呈现相似的规律,即提高压力导致半焦产率和气体产率均增加,焦油和热解水产率下降;相比于原煤,添加K2CO3后,半焦产率下降,焦油和热解水产率下降而气体产率明显增加;在压力与K_2CO_3双重作用下,热解气体组成中CH_4收率显著提高,在700℃,3.5 MPa条件下,H_2气氛促进了加氢热解反应的进行,同时水蒸气易与焦油中稠环芳烃大分子发生重整反应,导致在H_2+H_2O气氛下甲烷收率和焦油中正己烷可溶物产率均明显提高.  相似文献   

8.
煤焦油是低温煤热解技术的主要产物,是重要的化工原料,其产率和品质是评价煤热解工艺的重要指标。从原煤性质(煤种和煤粒径)、热解反应器结构形式及热解工艺条件(原煤预处理、热解温度、压力、升温速率、停留时间、热解气氛及催化剂)等方面综合分析了煤热解焦油产率和品质的影响因素,认为通过优选煤种和热解反应器,对煤样进行适当预处理,选择合适的工艺操作条件和引入加氢催化热解等有助于提高焦油产率和品质。  相似文献   

9.
在溶煤比为2.75∶1,氢初压为6.0MPa和反应时间为60min条件下,考察了温度、飞灰加入量、CoSO4和NiSO4用量及其加入方式等因素对五彩湾煤直接液化性能的影响.结果表明,在给定的条件下,在飞灰加入量为3%(daf,质量分数)和温度为415℃时,可获得最大油产率为64.59%;当CoSO4和NiSO4与飞灰和煤样机械混合加入时,对液化油产率和转化率产生负效应;当NiSO4和CoSO4浸渍担载加入时,油产率分别达到68.01%和66.58%.尽管煤质分析结果表明该煤样加氢液化性能较差,但以飞灰、CoSO4和NiSO4为催化剂时,还是获得了良好的液化效果.  相似文献   

10.
为探讨超声波辐射溶胀在煤炭直接液化过程中的积极作用,以吡啶为溶胀剂对神华煤进行了超声波辐射条件下的溶剂溶胀处理,通过对溶胀过程中不同溶胀时间煤样的溶胀度与质量损失情况测定以及超声波辐射溶胀煤与自然溶胀煤的液化实验比较,发现超声辐射有助于煤的溶胀作用,煤液化转化率提高了3%~4%.实验表明,超声溶胀能够进一步提高煤催化加氢直接液化的反应性能.  相似文献   

11.
Hengfu Shui  Zhicai Wang  Meixia Cao 《Fuel》2008,87(13-14):2908-2913
Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal.  相似文献   

12.
不同煤种配煤直接液化试验研究   总被引:9,自引:0,他引:9  
郭万喜  刘兵元  李苹 《煤化工》2004,32(2):10-15
介绍了不同煤种配煤直接液化试验研究成果;通过试验研究,总结出配煤液化反应过程中,两种煤中间物沥青质产生与转化为油的速率不同,催化剂效用得到了提高,从而提高了液化油产率;试验证明,大有高硫褐煤与天祝气煤配合,其直接液化油产率比两种单煤的液化油产率提高了2%以上,可达到69.66%,有较好的应用前景。  相似文献   

13.
Solvolytic liquefaction of coals of different rank was studied with a variety of solvents at 370–390 °C under nitrogen in order to elucidate the role of solvent in coal liquefaction of this kind and to find a suitable solvent for the highest yields of liquefaction. The yield was found to depend strongly upon the nature of the coal as well as the solvent under these conditions. Pyrene and a SRC-BS pitch were excellent solvents for Miike coal, which was fusible with high fluidity at these temperatures. However, the former was less efficient for Itmann and Taiheiyō coals which were fusible at a higher temperature and non-fusible, respectively. The mechanism of solvolytic liquefaction is discussed, including nature of coal and solvent at reaction temperatures, in order to understand the properties required for high yields with non-fusible coals in solvolytic liquefaction. It is found that for liquefaction with a high yield if the coal is non-fusible, solvolytic reaction should take place between solvent and coal, so giving a liquid phase of low viscosity at the reaction temperature. The solvolytic reaction may be one of hydrogen transfer when SRC-BS is used as the solvent.  相似文献   

14.
A model is presented for the kinetic study of the thermal liquefaction of Belle Ayr subbituminous and Burning Star bituminous coals with anthracene oil, hydrogenated anthracene oil and hydrogenated phenanthrene. All experiments were performed in a continuous-feed, stirred tank reactor, at a temperature of 450 °C and a space time of approximately 5 to 55 min. A kinetic model which includes a reaction: coal + oil→more reactive coal, correlates the data reasonably well. This reaction explains the net consumption of anthracene oil during the initial stages of liquefaction. Such a reaction may account for a portion of the swelling of coal at low space times and the sizable increase of viscosity of reaction slurry during these initial stages of liquefaction. It is also observed that the yield of oil increases when solvents of increasing hydrogen donor capacity are used.  相似文献   

15.
Hydrogen-donor solvents such as hydrophenanthrene are the most effective aromatic solvents for the liquefaction of brown coal. The hydrogen-donating ability of the solvent is more important for brown coals than for bituminous coals, because the thermal decomposition and subsequent recombination of the structure of the brown coals occurs rapidly. Three-ring aromatic hydrocarbons are more effective solvents than two-ring aromatics, and polar compounds are less effective solvents with brown coals than with bituminous coals. The thermal treatment of brown coal, accompanied by carbon dioxide evolution at temperatures > 300°C, in the presence of hydrogen-donating solvent did not affect the subsequent liquefaction reaction. However, thermal treatment in the absence of solvent strongly suppressed the liquefaction reaction, suggesting that the carbonization reaction occurred after the decarboxylation reaction in the absence of hydrogen donor. To study the effect of various iron compounds, brown coal and its THF-soluble fraction were hydrogenated at 450°C in the presence of ferrocene or iron oxide. The conversion of coal and the yield of degradation products are increased by the addition of the iron compounds, particularly ferrocene, and the yield of carbonaceous materials is decreased.  相似文献   

16.
Robert A. Durie 《Fuel》1982,61(10):883-888
This Paper provides an overview of the properties of coals and their importance in the selection of coal for use as feedstock for coal liquefaction processes. Matters emphasized include the heterogeneous and variable nature of coals, the differences that occur between coals of the same rank from different countries due to their origin in different geological periods, the influence of petrographic composition and rank in coal liquefaction, the inorganic ash-forming constituents in coal and their impact in coal liquefaction, and the importance of the pyrolytic decomposition of coals in coal liquefaction.  相似文献   

17.
Hydroliquefaction of subbituminous Taiheiyo coal, without any pretreatment and after organic reduction, was carried out in the presence of tetralin using fine iron powder as catalyst. Two pretreatment procedures were used (A) reduction of coal with Na in liquid ammonia solution and (B) treatment with K in refluxing THF. Samples of treated coal with well-dispersed iron powder were prepared by co-reduction of coal coated with FeBr2 using both procedures. Non-catalytic liquefaction of coal treated by A showed double the yield of hexane-solubles compared with that from liquefaction of the original coal while non-catalytic liquefaction of the coal treated by B roughly tripled the hexane-solubles yield and consumed the same amount of hydrogen. The presence of iron powder increased hexane-solubles by 5 wt% while increasing benzene-solubles by 13 wt% compared with non-catalytic liquefaction of treated coal by procedure B. The coals prepared by co-reduction (A and B) showed highest conversion (73 and 77%) along with highest yield of HS (38 and 43%). This significant effect on hydroliquefaction could be correlated with a slight increase of hydrogen atoms added to coal organic materials and the loosening of clusters of aromatic sheets.  相似文献   

18.
《Fuel》2002,81(11-12):1551-1557
The New Energy and Industrial Technology Development Organization (NEDO) has implemented the collaborative research work with China Coal Research Institute (CCRI) on the liquefaction of Chinese coals for about 20 years. A total of 53 runs in a 0.1 t/d bench scale coal liquefaction plant installed at the CCRI were made on 27 kinds of coal selected among coals existing throughout China. The bench plant was operated in a direct hydrogenation (DH) mode and NEDOL mode. In the DH mode, 25 MPa of reaction pressure was employed with decrystallized anthracene oil used as the solvent, while 17 MPa of reaction pressure was employed and hydrogenated solvent was used in the NEDOL mode. This study confirmed that the NEDOL mode, which uses comparatively mild in liquefaction conditions, can liquefy each coal with the high oil yield more efficiently, and is capable of liquefying about 60% of inertinite in high inertinite coals.  相似文献   

19.
Liquefaction reactions in a tubing-bomb reactor have been carried out as a function of coal, coal sampling source, reaction time, atmosphere, temperature, coal pre-treatment, SRC post-treatment and process solvent. Pyridine as well as toluene conversions ranging from 70 to > 90 wt% involving both eastern bituminous and western subbituminous coals are obtained. 1,2,3,4-Tetrahydroquinoline (THQ) has been extensively used as a process solvent under optimized liquefaction conditions of 2:1 solvent: coal, 7.5 MPa H2, 691 K and 30 min reaction time. Comparisons of THQ with other model process solvents such as methylnaphthalene and tetralin are described. Liquefaction product yield for conversion of subbituminous coal is markedly decreased when surface water is removed from the coal by drying in vacuo at room temperature prior to liquefaction. The effect of mixing THQ with Wilsonville hydrogenated process solvent in the liquefaction of Wyodak and Indiana V coals is described.  相似文献   

20.
王德强  袁源 《煤化工》2014,(3):31-34
以气煤、肥煤、焦煤、瘦煤为样煤,进行了样煤的粉碎、有机溶剂溶胀和硝酸氧化处理,考察了处理后煤样中的药用腐植酸得率。结果表明,吡啶和N,N-二甲基吡咯烷酮是溶胀较好的溶剂;样煤粉碎后,随着粒度的减小,煤的溶胀率增加;粒度粉碎至200目的气、肥煤经吡啶溶胀和硝酸氧化后,煤样的药用腐植酸得率可达到73.0%和71.4%,而经甲醇溶胀和硝酸氧化的200目气煤药用腐植酸得率为56.4%和58.4%。实验结果表明,煤样经过溶胀和硝酸氧化处理,对药用腐植酸的提取有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号