首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Al离子掺杂正极材料LiMn2O4的高温循环性能   总被引:1,自引:0,他引:1  
采用固相反应法分别合成正极材料LiMn2O4和LiAlxMn2-xO4(x=0.05,0.1,0.3).对它们进行XRD和SEM测试,并对比了高温下的循环性能.结果显示:除Al掺杂量x=0.3时,合成物出现了LiAlO2杂质相外,其余皆具有单一的尖晶石相结构.掺杂后的晶体颗粒比较圆润.LiMn2O4在高温下经过20次循环后,其比容量降低29%,衰减很快.造成衰减的主要原因是Mn3+歧化反应生成的Mn2+在电解液中的溶解,以及Jahn-Teller效应.通过阳离子Al3+的掺杂,有效的提高了尖晶石LiMn2O4的高温循环性能.  相似文献   

2.
表面掺杂Al的球形尖晶石LiMn2O4的高温循环性能   总被引:1,自引:0,他引:1  
采用控制结晶工艺合成了球形Mn3O4,通过在球形Mn3O4的表面包覆Al(OH)3,然后与LiOH一起混合焙烧制备了表面掺杂Al的尖晶石LiMn2O4。采用SEM,XRD,EDS以及电池系统测试等方法,研究了所制备材料的结构和性能。SEM分析表明:表面掺杂后,Al(OH)3均匀地包覆在颗粒表面。XRD和EDS分析表明:焙烧后,Al元素占据了Mn的位置,且颗粒表面的Al含量高于其总体的平均含量,说明Al只是在表面富集,即表面掺杂。电池测试表明:表面掺杂后,尖晶石LiMn2O4的初始充放电容量有所下降,但在高温55℃下的循环性能有显著的提高,表面掺杂6%Al的尖晶石LiMn2O4 50次循环的容量保持率从68.3%提高到79.0%。说明以Al^3+作为掺杂离子通过表面掺杂来改善LiMn2O4的高温循环性能是有效的。  相似文献   

3.
采用溶胶-凝胶法合成掺杂F^-的LiMn2O4。通过XRD、SEM对掺杂F-的LiMn2O4材料的组成、结构、微观形貌等进行分析与表征,测试不同F^-掺杂量的LiMn2O4在常温(20℃)、高温(55℃)下的电化学性能。结果表明:所合成的材料具有良好的尖晶石立方结构,无杂相;F^-的掺杂提高了材料的比容量,增强了材料的稳定性,改善了其在高温下的循环性能。当F^-的掺入量x由0增加到0.1时,材料的比容量由119.7 mA.h/g增加到124.9 mA.h/g,高温下充放电30个循环后容量保持率由79.4%增加到84.4%。  相似文献   

4.
通过X射线衍射(XRD)、扫描电镜(SEM)、粒度分析以及充放电性能测试对固相烧结法制备的LiCoxMn2-xO4(x=0,0.05,0.10,0.15,0.20)结构、形貌进行表征,并对电化学性质进行研究.研究结果表明,LiCoxMn2-xO4(x=0,0.05,0.10,0.15,0.20)均为单一尖晶石结构,无杂相存在;晶格常数随着掺杂量x的增大而线性减小;钴掺杂有助于LiCoxMn2-xO4晶体更规则地生长,使一次颗粒呈现八面体结构;掺钴对LiCoxMn2-xO4的平均粒径无明显影响;纯LiMn2O4在循环过种中容量衰减快,钴掺杂明显地改善了LiMn2O4充放电循环性能,且大电流放电能力提高;随着掺钴量的提高,大电流充放电性能与循环过程中容量的保持率也提高.  相似文献   

5.
采用沉淀法合成LiMn2-xTixO4(x=0.01,0.02,0.04,0.08,0.12),pH值在10.3~10.4内,搅拌速度350 r/min。采用两次高温烧结,预烧结温度为680℃,保温18h,第二次烧结温度为850℃,保温18h。对产物进行X射线衍射(XRD)测试、扫描电镜(SEM)分析和各项电化学性能测试。结果表明:Ti掺杂后的LiMn2O4的高温循环性能得到较明显地提高,有效抑制了高温循环容量衰减现象;当Ti4+的掺杂量为0.08时,LiMn1.92Ti0.08O4有较好的高温循环性能。  相似文献   

6.
用柠檬酸辅助溶胶一凝胶法在不同温度下合成了LiMn1.95Mg0.05O4正极材料。用X射线衍射、充放电测试以及电化学阻抗谱分析技术研究了不同合成温度对LiMn1.95Mg0.05O4结构和电化学性能的影响。结果表明:合成温度对LiMn1.95Mg0.05O4正极材料的晶相结构、电化学性能有显著影响,LiMn1.95Mg0.05O4尖晶石相的生成和长大与其合成的温度有密切的关系,合成的最佳温度为750℃;在750℃条件下合成的LiMn1.95Mg0.05O4具有较高的电化学活性和较好的晶相结构;高温合成有利于提高LiMn1.95Mg0.05O4正极材料的放电容量,低温合成有利于提高其循环性能。  相似文献   

7.
掺杂元素La、F对尖晶石LiMn2O4材料结构及性能的影响   总被引:1,自引:0,他引:1  
采用X-射线衍射仪(XRK)、扫描电子显微镜(SEM)、电池测试系统等研究了掺杂元素La、F对高温固相合成尖晶石型LiMn2O4材料的相结构、貌、活化性能、循环稳定性能的影响.结果表明:掺杂元素La、F可有效地提高LiMn2O4样品的充放电效率、循环稳定性能:随着掺杂元素F含量的增加,LiMn2O4-xFx样品的初始容量降低、循环稳定性能呈现出先增后减的变化规律;当掺杂元素La、F的含量较少时,LiLay,Mn2-yO4-xFx样品具有纯的尖晶石LMn2O4结构,样品呈球形或近球形,粒径范围为0.5~2.5 μm,LiLa0.02Mn1.98O3.95F0.05样品的初始放电容量为123.6mAh/g,经30次循环充放电后的容量为114.6mAh/g,容量保持率为92.7%,具有较好的活化性能和循环稳定性能.  相似文献   

8.
采用工业上常用的碳酸锰热解法制备锰氧化物前驱体,与Li2CO3混合后焙烧得到锂离子电池正极材料LiMn2O4,并在碳酸锰制备过程中掺入铝离子制备LiAlxMn2?xO4(x=0.01,0.02,0.03,0.05,0.1)。通过X射线衍射(XRD)和扫描电镜(SEM)对样品进行表征,并对合成材料在常温和高温(55℃)下的电化学性能进行研究。结果表明:合成的前驱体及锰酸锂材料均无杂相;随着Al3+掺杂量的增加,LiAlxMn2-xO4颗粒尺寸不断长大;材料的首次充放电比容量随Al3+掺杂量的升高而下降,但循环性能提高;Al3+的掺入极大地提高了材料的循环性能,尤其是在高温条件下,当掺杂量x=0.05时,1C倍率下循环100次容量的保持率由未掺杂的72.2%升高到90.7%。  相似文献   

9.
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池性能测试系统研究了多元稀土掺杂锂锰氧正极材料的相结构、形貌,并对其活化性能、循环稳定性能进行了表征。结果表明:采用Pechini法合成多元稀土掺杂LiMn2O4样品时,只有将掺杂元素的含量严格控制在一定范围内,所合成的LiMn2O4、LiLa0.03Mn1.97O4、LiLa0.012Ce0.012Mn1.976O4、LiLa0.012Nd0.012Mn1.976O4、LiCe0.012Nd0.012Mn1.976O4样品才具有纯尖晶石型LiMn2O4结构。当稀土掺杂元素含量较高时,所合成的LiLa0.015Ce0.015Mn1.97O4、LiLa0.015Nd0.015Mn1.97O4、LiCe0.015Nd0.015Mn1.97O4样品由LiMn2O4相及微量杂质相CeO2、Nd2O3、CeO2+Nd2O3组成。所有样品呈规则的近球形或球形,其粒径范围为0.5~2.8μm。适量的稀土元素掺杂将使LiMn2O4材料的初始容量减小、充放电效率及循环稳定性能增加,LiCe0.012Nd0.012Mn1.976O4样品具有较好的综合电化学性能,其初始容量为123.5mAh/g,经30次循环充放电后的容量为113.2mAh/g,为相同条件下LiMn2O4样品放电容量的1.27倍。  相似文献   

10.
采用传统固相反应法对水热BaTiO3粉体进行La2O3和Nb2O5双施主复合掺杂,研究(Bal-xLa2x/3)(Til-xNb4x/5)O3陶瓷显微结构特征。结果表明:随着X的增大,晶体结构逐渐由四方相转为立方相。当x≤0.03时,La^3+、Nb^5+固溶进入BaTiO3晶格形成单一的钙钛矿相;当x=0.05时,出现Ba6Til7O40富钛第二相;当x≥0.2时,出现Ba-Ti-La-Nb固溶组分的第二相,说明旆主掺杂固溶极限x〈0.2。当x=0.001时,瓷体具有半导化特征,晶粒尺寸为8~10μm;当x≥0.004时,瓷体开始呈现绝缘性,旆主离子表现出明显的抑制晶粒生长作用,随着X增加,晶粒尺寸由10μm(x=0.004)下降至0.5μm(x=0.3)。TEM和EDS分析表明,La^3+、Nb^5+双旆主复合掺杂,La^3+提高了Nb^5+的扩散固溶能力,相互协同作用使掺杂离子在BaTiO3中分布更均匀。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号