首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical solutions are derived for calculating natural ventilation flow rates and air temperatures in a single-zone building with two openings when no thermal mass is present. In these solutions, the independent variables are the heat source strength and wind speed, rather than given indoor air temperatures. Three air change rate parameters α, β and γ are introduced to characterise, respectively, the effects of the thermal buoyancy force, the envelope heat loss and the wind force. Non-dimensional graphs are presented for calculating ventilation flow rates and air temperatures, and for sizing ventilation openings. The wind can either assist the buoyancy force or oppose the airflow. For assisting winds, the flow is always upwards and the solutions are straightforward. For opposing winds, the flow can be either upwards or downwards depending on the relative strengths of the two forces. In this case, the solution for the flow rate as a function of the heat source strength presents some complex features. A simple dynamical analysis is carried out to identify the stable solutions.  相似文献   

2.
The effectiveness of ventilation flows is considered from the perspective of buoyancy (or heat) removal from a space. This perspective is distinct from the standard in which the effectiveness is based on the concentrations of a neutrally buoyant contaminant/passive tracer. Three new measures of effectiveness are proposed based on the ability of a flow to flush buoyancy from a ventilated space. These measures provide estimates of instantaneous and time-averaged effectiveness for the entire space, and local effectiveness at any height of interest. From a generalisation of the latter, a vertical profile of effectiveness is defined. These measures enable quantitative comparisons to be made between different flows and they are applicable when there is a difference in density (as is typical due to temperature differences) between the interior environment and the replacement air. Applications, therefore, include natural ventilation, hybrid ventilation and a range of forced ventilation flows. Finally, we demonstrate how the ventilation effectiveness of a room may be assessed from simple traces of temperature versus time.  相似文献   

3.
Energy-conservation measures for buildings work partly by reducing air exchange (v) between buildings and their surroundings, resulting in greater retention of pollutants emitted indoors by combustion and other sources. For example, if v is reduced 4-fold, pilot-light pollutant contribution will quadruple (perhaps rising from ?5 mg/m3 to ?20 mg/m3 for carbon-monoxide). A calculation shows that it might take 412 h for CO levels to decline below the EPA one-hour ambient standard after only 1 h of oven use in a small kitchen when v = 14 air change/h (ach) but less than 12 h when v = 1 ach.We present a model that accounts for the reduced heating system operating requirement permitted by energy conservation by assuming that indoor pollutant levels are linear in v This model predicts that when v is reduced 4-fold, heating system pollutant contributions can still rise up to 3-fold, depending upon building characteristics and the extent of increased insulation.Thus precautions are clearly necessary when tightening building envelopes. At a minimum, pilot lights should be eliminated and effective kitchen ventilation systems installed.  相似文献   

4.
Urban heat island can significantly increase the demand for cooling of buildings in cities. This paper investigates one of the main causes of the urban heat island phenomenon, i.e. reduced city ventilation. Two simple Hong Kong city models with relatively complex terrain were considered here under different atmospheric conditions. A 3D RNG k-? turbulence model was used for modeling turbulence effects. The simulation results showed that the influence of thermal stratification can be significant on city ventilation driven partially by thermal buoyancy. When the wind speed is relatively large, the impact of thermal stratification on air flow in city street canyons is minor. When the wind speed is small relative to the buoyancy force, the airflow in the street canyons is dependent on thermal stratification. When there is an adverse vertical temperature gradient, the greater the instability, the stronger the vertical mixing and the greater the flow rate caused by turbulence. The heat and pollutants can easily accumulate under stable atmospheric conditions when there is only a weak background wind or none at all.  相似文献   

5.
Urban heat island phenomena and air pollution become serious problems in weak wind regions such as behind buildings and within street canyons, where buoyancy effect cannot be neglected. In order to apply CFD techniques for estimation of ventilation and thermal and pollutant dispersion in urban areas, it is important to assess the performance of turbulence models adopted to simulate these phenomena. As the first step of this study, we carried out wind tunnel experiments and CFD simulations of gas and thermal dispersion behind a high-rise building in an unstable non-isothermal turbulent flow. The standard k-ε model and a two-equation heat-transfer model as RANS models, and LES, were used for the CFD simulation. One of the important purposes of this study was to clarify the effect of inflow turbulence (both velocity and temperature) on flow field and gas/thermal dispersion for the LES calculation. Thus, LES calculations with/without inflow turbulence were conducted. The inflow turbulence was generated through a separate precursor simulation. The calculated results showed that both RANS models overestimated the size of the recirculation region behind the building and underestimated the lateral dispersion of the gas. Turbulent flow structures of LES with and without inflow turbulence were completely different. The LES result with inflow turbulence achieved better agreement with the experiment.  相似文献   

6.
Air change rate (ACR) data obtained from the bedrooms of 500 Danish children and presented in an earlier paper were analyzed in more detail. Questionnaires distributed to the families, home inspections and interviews with the parents provided information about a broad range of residential characteristics and occupant behavior. These were tested in several linear regression models to identify the degree of effect each selected independent variable has on the total ACR. The measured ACRs are summarized by some of the most significant variables such as room volume (higher ACR in smaller rooms), number of people sleeping in the bedroom (higher ACR with more people), average window and door opening habits (higher ACR with more opening), sharing the bedroom with other family members (higher ACR in shared rooms), location of the measured room (higher ACR above ground floor), year of construction (lowest ACR in buildings from early 1970s), observed condensation on the bedroom window (higher ACR at less condensation), etc. The best-fitting model explained 46% of the variability in the air change rates. Variables related to occupant behavior were stronger predictors of ventilation rate (model R2 = 0.30) than those related to building characteristics (model R2 = 0.09). Although not perfectly accurate on a room-to-room basis, our best-fitting model may be useful when a rough estimate of the average air change rate for larger study populations is required in future indoor air quality models.  相似文献   

7.
随着城市交通的快速发展,交通污染逐渐成为影响城市空气质量的主要因素。街谷内的交通污染还会因为室内通风对室内空气质量产生影响。本文介绍了城市街谷内交通空气污染的主要特点和扩散模式,总结了室外交通污染对室内空气质量的影响特点和影响因素,并对现有的实地测量法、理论模式预测法和数值模拟法进行了分析和比较,最终对数值模拟法可能遇到的问题和解决方法进行了分析和讨论。  相似文献   

8.
Cao SJ  Meyers J 《Indoor air》2012,22(5):427-441
Abstract The construction of fast reliable low-dimensional models is important for monitoring and control of ventilation applications. We employ a discrete Green's function approach to derive a linear low-dimensional ventilation model directly from the governing equations for indoor ventilation (i.e., the Navier-Stokes equations supplemented with a transport equation for indoor-pollutant concentration). It is shown that the flow equations decouple from the concentration equation when the ratio α of air-mass-flow rate to pollutant-mass-flow rate increases to infinity. A low-dimensional discrete representation of the Green's function of the concentration equation can then be constructed, based on either numerical simulations or experiments. This serves as a linear model that allows for the reconstruction of concentration fields resulting from any type of pollutant-source distribution. We employ a suite of Reynolds-averaged Navier-Stokes (RANS) simulations to illustrate the methodology. We focus on a simple benchmark ventilation case under constant-density conditions. Discrete linear ventilation models for the concentration are then derived and compared with coupled RANS simulations. An analysis of errors in the discrete linear model is presented: Dependence of the error on the (low-dimensional) resolution in the discrete model is quantified, and errors introduced by too low values of α are also investigated. PRACTICAL IMPLICATIONS: The paper introduces the derivation and construction of linear low-dimensional ventilation models, which allow reconstructing concentration fields resulting from any type of indoor-pollutant-source distribution. Once constructed, these ventilation models are very efficient to estimate indoor contaminant concentration distributions, compared to direct CFD simulation approaches. Therefore, these models can facilitate monitoring and control of ventilation systems, to remove indoor contaminants.  相似文献   

9.
Transient pollutant flushing of buoyancy-driven natural ventilation   总被引:1,自引:0,他引:1  
The transient flushing of neutrally-buoyant pollutants from a naturally ventilated enclosure is investigated. A simplified transient model for buoyancy-driven natural ventilation produced by a point source of heat is presented to describe the ventilation development from the plume generation to its steady state. The instantaneous thermal stratification interface height and ventilation flow rate and the time taken for the flow to reach the steady state are then examined by the transient model. The results indicate that the decrease of the thermal stratification interface height with dimensionless time, the steady-state interface height and the dimensionless time taken for the flow to reach the steady state are only determined by the dimensionless effective area of the vents. The ventilation flow rate can be increased by decreasing the enclosure floor area or increasing the effective vent area, enclosure height or source buoyancy flux. Accordingly, for rooms with smaller floor area, larger effective vent area or larger source buoyancy flux, ventilation airflow provides more effective flushing of neutrally-buoyant pollutant. Nevertheless, increasing the enclosure height is only beneficial to flush the pollutant from the lower layer rapidly and is disadvantageous to reduce the pollutant concentration of the upper layer.  相似文献   

10.
When the wind direction is parallel to the opening façade, the wind shear near the building opening generates turbulence and entrains air across the opening. This kind of shear-induced ventilation cannot be predicted by the orifice equation because the time-averaged pressure difference across the opening is close to zero. This study uses wind tunnel experiments and the tracer gas decay method to investigate the ventilation rate of shear-induced ventilation. The influences of opening area A, external wind speed U and wind direction on the ventilation rates Q, of single-sided and two-sided openings are systemically examined. The experimental results indicate that the dimensionless ventilation rate, Q* = Q/UA, of shear-induced ventilation is independent of the wind speed and opening area, and the value of Q* of two-sided openings is larger than that of a single-sided opening. In addition, a cosine law was used to predict the ventilation rate of building with two-sided openings under various wind directions, and the results are compared with the prediction of the multizone ventilation model COMIS.  相似文献   

11.
A new simplified model (UPMTUNNEL) for the simulation of accidental fires in road tunnels with longitudinal ventilation is presented. The model follows a mixed approach, and has characteristics typical of both field and zone models. Like field models, the proposed model calculates the main properties at every point in the whole domain. The tunnel is divided in two zones: the plume, located upstream from the point at which the smoke hits the ceiling, and a diffusion zone extending downstream. Each of these two regions is analyzed assuming steady-state conditions. The plume is described by one-dimensional conservation equations for turbulent flows. To deduce the 1D equations, the 3D problem is considered to be parabolic along the center-line of the flame, and self-similar profiles in planes normal to this line are assumed. The diffusion region is studied as an incompressible unidirectional problem, described by the energy conservation equation. 3D models and full-scale experiments have been used in order to validate the results of the UPMTUNNEL model. Two different general-purpose codes are employed: FLUENT and PHOENICS, in which the eddy break-up and kεg turbulent combustion models have been, respectively, implemented.  相似文献   

12.
Displacement ventilation is acknowledged to be an efficient system for the removal of contaminants and excess heat from occupied zones of rooms. However, airflow rates, temperature and the design of the air supply device strongly influence the parameters which determine thermal comfort. This paper reviews experiments and theoretical models which show the connection between these parameters. The width and shape of the air supply device have been varied, and a porous media has been used on the inlet area of the air supply device. The velocity and temperature profiles have been measured. The results presented show also that the flow can be described with respect to width and form of the profiles for temperature and velocity. The flow does not operate like a turbulent jet due to thermal stratification. It is shown that the Archimedes number of the supply air is the parameter which determines the air velocity in the area close to the floor. (The Archimedes number is here defined as the ratio between buoyancy and inertia forces.) The results show that it is possible to remove considerable amounts of excess heat from a room, typically 40-50 W/m2, without exceeding the limits for thermal comfort. However, this requires relatively high airflow rates and supply air terminal units at least along one of the walls.  相似文献   

13.
The constantly increasing energy consumption due to the use of mechanical ventilation contributes to atmospheric pollution and global warming. An alternative method to overcome this problem is natural ventilation. The proper design of natural ventilation must be based on detailed understanding of airflow within enclosed spaces, governed by pressure differences due to wind and buoyancy forces. In the present study, natural cross-ventilation with openings at non-symmetrical locations is examined experimentally in a test chamber and numerically using advanced computational fluid dynamics techniques. The experimental part consisted of temperature and velocity measurements at strategically selected locations in the chamber, during noon and afternoon hours of typical summer days. External weather conditions were recorded by a weather station at the chamber's site. The computational part of the study consisted of the steady-state application of three Reynolds-Averaged Navier-Stokes (RANS) models modified to account for both wind and buoyancy effects: the standard k?, the RNG k? and the so-called “realizable” k? models. Two computational domains were used, corresponding to each recorded wind incidence angle. It is concluded that all turbulence models applied agree relatively well with the experimental measurements. The indoor thermal environment was also studied using two thermal comfort models found in literature for the estimation of thermal comfort under high-temperature experimental conditions.  相似文献   

14.
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students’ performance assessed by short-term computer-based tests; whereas good air quality in classrooms can enhance children's concentration and also teachers’ productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8–2.4 m2/person) compared to offices (10 m2/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils’ performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils’ performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9–11 years. On completion of the project, based on the overall data recommendations for suitable ventilation rates for schools will be formulated.  相似文献   

15.
Recent advancements in engineering technology have enabled the construction of super-large underground engineering projects in China. Currently, the ventilation requirements and standards of normal-size underground spaces are used for super-large underground excavating engineering projects in China. For example, the minimum air velocity of 0.15 m/s is the standard velocity for normal-size underground spaces; however, this value is also used as the required air velocity for diluting underground contaminants in super-large underground developments. This paper aims to examine the minimum ventilation requirements for super-large underground developments (S > 100 m2). A three-dimensional computational domain representing a full-scale underground space has been developed. The pertinent parameters such as dust concentration, smoke density, oxygen concentration and air temperature have been simulated. The results show that at some specific underground conditions, the ventilation air velocity of 0.15 m/s is sufficient to control the dust level, provide required oxygen concentration and maintain the air temperature at acceptable levels during development; however, it is not sufficient to bring the CO concentration below an acceptable safe limit. This must be considered by the ventilation system designers of super-large underground developments.  相似文献   

16.
Abstract The air change effectiveness (ACE), an indicator of the indoor airflow pattern, was measured in twenty-six laboratory experiments. Ventilation air was supplied through induction-type diffusers located in the ceiling and removed through a ceiling mounted return grille. The tracer-gas step-up measurement procedure was employed. In five of the experiments, pollutant removal efficiencies were also measured for simulated pollutant emissions from the floor covering and for simulated emissions from occupants. In experiments with heated supply air, supply airflow rates typical of the minimum supply flow rates of VAV ventilation systems, and 100% outside air, the ACE ranged from 0.69 to 0.89. These results indicate that significant short-circuiting of ventilation air between the supply air diffuser and return air grille does occur under these adverse conditions. Mechanical recirculation of air, so that the supply air contained approximately 50% outside air, increased the ACE by about 0.05. When the supply air was cooled, the ACE ranged from 0.99 to 1.15, adding to existing evidence that short-circuiting is rarely a problem when the building is being cooled. The pollutant removal efficiency for simulated pollutant emissions from the floor covering (PREfloor) was strongly correlated with ACE (R2= 0.98) and the values of PREfloor were within approximately 0.1 of the values of ACE. The pollutant removal efficiency for simulated pollutant emissions by occupants varied between workstations and was not as well correlated with the ACE.  相似文献   

17.
Environmental safety issues and ventilation problems caused by the construction of urban tunnel have increasingly been attracting people’s attention. Previous studies in China have mainly focused on vehicle emissions and ventilation control technologies in road tunnels, resulting in a research gap on urban tunnel ventilation engineering design. Therefore, a detailed monitoring investigation was conducted from May 22 to June 2, 2013 in Changsha Yingpan Road Tunnel, China. The study aim was to measure the traffic characteristics, air velocity and the carbon monoxide (CO), nitrogen oxides (NOx) and fine particulate matter (PM2.5) concentrations in this tunnel, which has two lanes per bore and multiple ramps. Measurement results show that during the workday morning peak, the maximum traffic flow was 1560 passenger-car-unit/h per lane with vehicle speed around 33.6 km/h in the eastbound tunnel, the average air velocity was 3.07 m/s, and the proportion of the light-duty vehicles (LDV) was 97.3%. Under the traffic force (not open fan), the CO and NO average concentrations at the main tunnel outlet were 20.3 ppm and 1.65 ppm, respectively. The gas pollutant concentrations are effectively controlled within the multiple-ramps tunnel and the design air volume flow is noticeably reduced. The traffic air flow was found to provide 32.5% of the required air volume to dilute NOx in blocked traffic condition (vehicle speed of 10 km/h). In addition, the PM2.5 concentration is mainly affected by the value of background outside the tunnel. The result can provide a quantitative assessment method to support pollutant concentration control and contribution of requested air volume by traffic flow in urban complex structure tunnel.  相似文献   

18.
《Building and Environment》2005,40(11):1566-1571
Based on an averaging technique, a methodology has been established to estimate an effective radon emanation factor M for residential premises. The model shows that the new term M and the ventilation rate are the essential parameters in estimating the level of indoor radon. M includes two components: the radon emanation rates of internal surface materials and the ratio of surface areas of applicable materials to premises volume. The value of M can be determined from on-site measurements. Different ventilation modes of a sampled residential unit during daytime and nighttime, with air conditioner on, window-open, and window-closed were included in site measurements. Each ventilation mode was measured twice during daytime and twice at night. During the investigation, air exchange rate, and indoor and outdoor radon levels were monitored simultaneously. The results of measurements were then used to verify the model. The value of M was found to be 31.7 Bq m−3 h−1. The model is valid if the air exchange rate is larger than 0.2 h−1.  相似文献   

19.
Urban ventilation implies that wind from rural areas may supply relatively clean air into urban canopies and distribute rural air within them to help air exchange and pollutant dilution. This paper experimentally and numerically studied such flows through high-rise square building arrays as the approaching rural wind is parallel to the main streets. The street aspect ratio (building height/street width, H/W) is from 2 to 5.3 and the building area (or packing) density (λp) is 0.25 or 0.4. Wind speed is found to decrease quickly through high-rise building arrays. For neighbourhood-scale building arrays (1-2 km at full scale), the velocity may stop decreasing near leeward street entries due to vertical downward mixing induced by the wake. Strong shear layer exists near canopy roof levels producing three-dimensional (3D) vortexes in the secondary streets and considerable air exchanges across the boundaries with their surroundings. Building height variations may destroy or deviate 3D canyon vortexes and induced downward mean flow in front of taller buildings and upward flow behind taller buildings. With a power-law approaching wind profile, taller building arrays capture more rural air and experience a stronger wind within the urban canopy if the total street length is effectively limited. Wider streets (or smaller λp), and suitable arrangements of building height variations may be good choices to improve the ventilation in high-rise urban areas.  相似文献   

20.
《Energy and Buildings》1998,29(1):93-105
A CO2 concentration of more than 1000 ppm has been monitored in Taiwanese bedrooms during sleeping hours in the wintertime. The high indoor CO2 levels were caused by poor ventilation due to insufficient ventilation rates. This study sought to reduce the wintertime CO2 concentration level in a typical Taiwanese bedroom with less outdoor air to maintain thermal comfort. CO2 was used as an indicator to assess whether an adequate ventilation rate has been obtained to dilute or remove harmful pollutants. With the help of the thermal buoyancy effect, the CO2 generated in the bedroom was effectively removed by means of less outdoor air. Through computational fluid dynamics simulations, the appropriate window and transom locations with the corresponding outdoor air supply volume, as well as the lowest possible outdoor air temperature were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号