共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past years, there have been a number of serious explosions in air industry, which have resulted in workers injuries and fatalities. At the same time, there has been an increase in the use of air separation products for industrial activities.The quality of air entering an air separation plant is of crucial importance for its safe and reliable operation and the interest in the solubility data of solids in cryogenic liquid solvents is closely connected to the problem of impurities accumulation in the process plant and storage tanks. Such accumulations, especially in liquid oxygen, may cause fouling and blockage in heat exchangers and pipelines and they may eventually cause serious explosions. For this reason the air contaminants composition in liquid oxygen must be determined with great precision.This paper aims at reviewing experimental methods for determining the solubility of solid compounds that may be present in the cryogenic liquefaction processing of air distillation. A review of the literature data on solubility of solids in liquid oxygen and nitrogen is included as well.Emphasis is given to the difficulties in setting-up measuring apparatuses working at extreme conditions, i.e. low compositions and low temperatures. 相似文献
2.
This paper describes a method for measuring the mass of cryogenic fluids in on-board rocket propellant tanks or ground storage tanks. Linear approximations to the Clausius-Mossotti relationship serve as the foundation for a capacitance based mass sensor, regardless of fluid density stratification or tank shape. Sensor design considerations are presented along with the experimental results for a capacitance based mass gage tested in liquid nitrogen. This test data is shown to be consistent with theory resulting in a demonstrated mass measurement accuracy of ±0.75% and a deviation from linearity of less than ±0.30% of full scale mass. Theoretical accuracies are also shown to be ±0.73% for hydrogen and ±1.39% for oxygen for a select range of pressures and temperatures. 相似文献
3.
A gravity assisted heat pipe with 7-mm diameter has been developed and tested to cool a liquid hydrogen target for extracted beam experiments at COSY. The liquid flowing down from the condenser surface is separated from the vapor flowing up by a thin wall 3 mm diameter plastic tube located concentrically inside the heat pipe. The heat pipe was tested at different inclination angles with respect to the horizontal plane. The heat pipe showed good operating characteristics because of the low radiation heat load from the surroundings, low heat capacity due to the small mass, higher sensitivity to heat loads (to overcome the heat load before the complete vaporization of the liquid in the target cell) due to the higher vapor speed inside the heat pipe which transfers the heat load to the condenser. 相似文献
4.
Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system 总被引:1,自引:0,他引:1
Catherine A. Kennedy 《低温学》2007,47(2):107-112
A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no “ideal” sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty. 相似文献
5.
Today’s laser interferometric gravitational wave detectors are sensitivity limited by thermal noise of the optical components within the detection band of about 0.1-1 kHz. Cooling down these parts to cryogenic temperatures is a promising technique to increase the sensitivity of the gravitational wave detectors by at least one to two orders of magnitudes. Cooling substantially increases the material Q-factor contributing to reduced thermal noise. This article describes a new cryogenic apparatus which allows the measurement of the mechanical Q-factor - as a measure of internal losses - in a temperature range from 5 K up to 300 K. The requirements for cryogenic Q-factor measurements and their realization are shown. The measuring technique as well as the key parameters are discussed. Exemplary, measurements on crystalline quartz and silicon (1 0 0) are given to characterize the setup. 相似文献
6.
Tecamax® SRP (self-reinforced polyphenylene) is a new commercially available amorphous polymer which is suitable for use at cryogenic temperatures. It has a high tensile strength (210 MPa at room temperature), resulting from the molecular structure of the polymer rather than by the addition of reinforcing materials. We have measured the thermal conductivity between 60 mK and 280 K. We find that the conductivity below 10 K is similar to, but lower than, most amorphous materials, and the material offers a good combination of low conductivity at low temperatures and high tensile strength. Our results suggest that the material may in fact have a small crystalline component, which may be a partial explanation for the low conductivity. Above 10 K, the temperature dependence of the conductivity is different from most amorphous materials. We are unaware of previous measurements of the thermal conductivity of this material, even at room temperature. 相似文献
7.
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump–nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases. 相似文献
8.
A specific experimental arrangement has been developed for low temperature measurements of thermal conductivity of small samples such as single crystals of magnetic insulators with a typical length of a few millimeters. A frame of low conductance, serving as a mechanical support for ruthenium thermometers recording the temperature gradient on a sample, has been tested in the temperature range from 150 mK to 5 K by using commercial 99.95% purity polycrystalline non-annealed molybdenum. The applicability of the setup is discussed for the samples with the thermal conductance in the range 10−5-10−3 W/K. 相似文献
9.
Liquid hydrogen at 20 K was harmlessly released at Turin’s Porta Susa station over a period of seven hours on 9 July 1991 through the safety valve of a dewar-type tank on a railway wagon following the loss of the vacuum between its two walls. Commercially available programs were unable to model this type of release in the unusual conditions in which this hydrogen had been stored. A model illustrating the course of the accident was therefore worked out. A start was made by examining the changes in the physical and thermodynamic properties of the hydrogen progress in the dewar to find out how long it had taken to build up the pressure needed to open the safety valve.Owing to the complex geometry of the insulating layer in the interspace of the dewar on which the liquefaction of the air took place, the heat exchange coefficient could not be determined a priori. It was therefore assumed and subsequently quantified by means of an iterative process. The thermodynamic data were then used to examine the outflow of the hydrogen from the venting line. Flow dynamic calculations showed that the hydrogen was entirely lost through the safety valve and that pressure losses along the approx. 3-m line were negligible. The model also showed that the speed of the outflow was subsonic. The speed evaluated will enable the dispersion of the hydrogen and hence the areas at risk to be evaluated in the subsequent stages of the study. 相似文献
10.
This paper examines the effect of magnetic field on the fracture properties of austenitic stainless steels at liquid helium temperature (4 K). Small punch tests were performed on cold-rolled 304 and 316 austenitic stainless steels. Previously proposed correlation for small punch and elastic-plastic fracture toughness test methods was applied to predict a small punch test-based fracture toughness from equivalent fracture strain. 相似文献
11.
We are developing a new cryogenic neutrino detector: electron bubble chamber, using liquid helium as the detecting medium, for the detection of low energy p-p reaction neutrinos (<420 keV), from the Sun. The program focuses in particular on the interactions of neutrinos scattering off atomic electrons in the detecting medium of liquid helium, resulting in recoil electrons which can be measured. We designed and constructed a small test chamber with 1.5 L active volume to start the detector R&D, and performed experimental proofs of the operation principle. The test chamber is a stainless steel cylinder equipped with five optical windows and ten high voltage cables. To shield the liquid helium chamber against the external heat loads, the chamber is made of double-walled jacket cooled by a pumped helium bath and is built into a LN2/LHe cryostat, equipped with 80 K and 4 K radiation shields. A needle valve for vapor helium cooling was used to provide a 1.7-4.5 K low temperature environments. The cryogenic test chamber has been successfully operated to test the performance of Gas Electron Multipliers (GEMs) in He and He + H2 at temperatures in the range of 3-293 K. This paper will give an introduction on the cryogenic solar neutrino detector using electron bubbles in liquid helium, then present the cryogenic design and operation of liquid helium in the small test chamber. The general principles of a full-scale electron bubble detector for the detection of low energy solar neutrinos are also proposed. 相似文献
12.
The present paper includes experimental and analytical data on the fracture properties of a nickel-iron superalloy, a ferromagnetic austenite, at 4 K in magnetic fields of 0 and 6 T. The tensile, notch tensile and small punch tests are employed. A finite element analysis is also performed to convert the experimentally measured load-displacement data into useful engineering information. To interpret the results we review the available theory of the influence of magnetic field on the stress intensity factor for a crack in ferromagnetic materials. 相似文献
13.
B. Sanguinetti 《低温学》2006,46(9):694-696
The piezoelectric SQUIGGLE® motor model SQ-110C from New Scale Technologies, Inc., has been used in a cryostat as part of a mechanism to accurately deform a cylindrical superconducting microwave resonator in order to change its resonant frequency. This paper describes the practical setup for testing and using the piezo motor in a cryostat, and comments on the performance of the motor at temperatures from room temperature to 6 K. 相似文献
14.
We have proven by numerical analysis and experiment that with the use of the SRDB developed shieldless method for cryogenic vapor usage maximum vapor–cold usage is achieved. It is shown that evaporation is decreased in cryovessels and cryostats by using this method equal to 45 times for helium, 5 times for hydrogen and 1.7 times for nitrogen. 相似文献
15.
Adam L. Woodcraft 《低温学》2005,45(9):626-636
The thermal conductivity of pure aluminium at cryogenic temperatures varies by many orders of magnitude depending on purity and treatment, and there is little information in the literature on the likely values to be obtained for samples of a given purity. A compilation of measurements from the literature has been assembled and used to provide recommended ranges of values for aluminium of different purities (4N, 5N and 6N) in the normal (non superconducting) state. The number of direct thermal conductivity measurements is too limited to be used alone. Electrical resistivity measurements have thus also been used by converting to thermal conductivity using the Wiedemann-Franz law, which is shown to be valid. Since low temperature measurements can easily be extrapolated to higher temperatures, the results cover the range from 1.2 K (the superconducting transition temperature) to room temperature. Values for 5N purity copper have also been examined in a similar manner, to allow a comparison between the two materials. The main application of these results is in the design of cryogenic thermal links; a discussion of the advantages and disadvantages of both materials for this use is given. The use of silver is also investigated briefly. Trends in the behaviour of the conductivity of aluminium in the superconducting state (to temperatures as low as 50 mK) are also discussed. 相似文献
16.
A laser holography interferometer is applied to investigate heat and mass transport phenomena around the pseudo-critical line of supercritical artificial air with a composition of 79% nitrogen and 21% oxygen. In a previous study, we successfully observed the heat transport phenomenon, the piston effect, around the pseudo-critical line of nitrogen. The same experimental set-up is applied to the supercritical artificial air, which is a compressible binary mixture fluid. We attempt to suppress the generation of natural convection, and successfully observe the heat and mass transport phenomena, which are the soret effect and the piston effect, respectively. Here, we discuss these effects observed in the supercritical artificial air. 相似文献
17.
This paper analyses the evacuation period of a 300 L super-insulated cryogenic storage tank for liquid nitrogen. Storage tank and radiation shields are the same as in part I of this paper. The present analysis extends application of stationary fluid networks to unsteady-states to determine local, residual gas pressures between shields and the evacuation time of a multilayer super-insulation. Parameter tests comprise magnitude of desorption from radiation shields, spacers and container walls and their influence on length of the evacuation period. Calculation of the integrals over time-dependent desorption rates roughly confirms weight losses of radiation shields obtained after heating and out-gassing the materials, as reported in the literature. After flooding the insulation space with dry N2-gas, the evacuation time can enormously be reduced, from 72 to 4 h, to obtain a residual gas pressure of 0.01 Pa in-between shields of this storage tank. Permeation of nitrogen through container walls is of no importance for residual gas pressures. The simulations finally compare freezing H2O-layers adsorbed on shields, spacers and container walls with flooding of the materials. 相似文献
18.
The effect of temperature on the constant fatigue life (CFL) diagram for a woven fabric carbon/epoxy quasi-isotropic laminate has been examined. Constant amplitude fatigue tests are first performed at different stress ratios on coupon specimens at room temperature (RT), 100 and 150 °C, respectively. The experimental results show that the CFL diagram for the woven CFRP laminate, which is plotted in the plane of mean and alternating stresses, becomes asymmetric about the alternating stress axis, regardless of test temperature, and shrinks as temperature increases. The CFL envelopes for given constant values of life are nonlinear over the range of fatigue cycles, regardless of test temperature, and they take peaks approximately at a particular stress ratio “critical stress ratio” that is given by the ratio of compressive strength to tensile strength. Then, the experimental CFL diagram for each temperature is compared with prediction using the anisomorphic CFL diagram approach that allows constructing the asymmetric and nonlinear CFL diagram for a given composite on the basis of the static strengths in tension and compression and the reference S-N relationship for the critical stress ratio. It is demonstrated that the anisomorphic CFL diagram approach can successfully be employed for predicting the CFL diagram and thus for predicting the S-N relationships for the woven CFRP laminate at any stress ratios, regardless of test temperature. 相似文献
19.
The design of a portable, “stand-alone” cooling system, for use with a high-temperature superconducting (HTS) magnet, is discussed. The HTS magnet is used to propel a magnetohydrodynamically powered model boat (approximately 120 cm × 60 cm). The aim of this investigation was to establish the suitability of solid nitrogen for use in the stand-alone cooling system, and determine the optimum method for exploiting its cooling power. It was found that obtaining good thermal contact between solid nitrogen and its container is very difficult if the nitrogen is frozen under vacuum, due to the formation of a thermal barrier between the nitrogen and its container. This problem is overcome if the nitrogen is frozen via conduction cooling from cold helium gas (at ∼4.2 K); and the design for a near isothermal “thermal battery” based on this principle is presented. This thermal battery has been constructed and integrated into the HTS magnet system onboard the model boat, and the results from the first trials of this system are presented here. 相似文献
20.
Background/purposeThe impact-induced damage of composite structures induced by low-velocity impacts were evaluated to verify the damage evaluation concept using the “memory effects” of tin-coated FBG sensors.MethodsLow-velocity impact tests for the composite cylinder with tin-coated FBG sensors were performed at three impact energies. Hoop ring tests for the composite cylinder including impact-induced damage were additionally undertaken in order to measure the burst pressure and to study the parameter correlations. The test results were compared with the numerical results obtained by a finite element analysis (FEA) based on a continuum damage mechanics (CDM) considering damage model. The parameter correlations among the impact parameters and the residual strains induced by tin-coated FBG sensors were investigated based on the tests results.ResultsImpact behaviors obtained by the tests and the numerical simulation were agreed well. It was found that tin-coated FBG sensors can monitor the strain of the composite cylinder under low-velocity impacts and their strain monitoring capability is comparable to that of normally used FBG sensors. The residual strains of tin-coated FBG sensors were correlated with the impact parameters such as the impact energy, the sensing position of the sensors, and the burst pressure of the composite cylinder.ConclusionThe correlations among the residual strains and the parameters proved the damage evaluation concept for composite cylinders using the “memory effects” of tin-coated FBG sensors under low-velocity impact conditions; that is, the impact-induced damage, impact location, and burst pressure can be inversely evaluated by referring to the correlations. 相似文献