首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The inhibition characteristics of non-ionic surfactants of the TRITON-X series, namely TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.005–0.075 g L−1) and solution temperature (278–338 K). Measurements were conducted based on Tafel extrapolation method. Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented. Experimental corrosion rates determined by the Tafel extrapolation method were compared with corrosion rates obtained by the EFM technique and an independent method of chemical analysis. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry). The aim was to confirm validation of corrosion rates measured by the Tafel extrapolation method. Results obtained showed that, in all cases, the inhibition efficiency increased with increase in temperature, suggesting that chemical adsorption occurs. The adsorptive behaviour of the three surfactants followed Temkin-type isotherm. The standard free energies of adsorption decreased with temperature, reflecting better inhibition performance. These findings confirm chemisorption of the tested inhibitors. Thermodynamic activation functions of the dissolution process were also calculated as a function of each inhibitor concentration. All the results obtained from the methods employed are in reasonable agreement.  相似文献   

2.
Corrosion inhibition of copper in O2-saturated 0.50 M H2SO4 solutions by four selected amino acids, namely glycine (Gly), alanine (Ala), valine (Val), or tyrosine (Tyr), was studied using Tafel polarization, linear polarization, impedance, and electrochemical frequency modulation (EFM) at 30 °C. Protection efficiencies of almost 98% and 91% were obtained with 50 mM Tyr and Gly, respectively. On the other hand, Ala and Val reached only about 75%. Corrosion rates determined by the Tafel extrapolation method were in good agreement with those obtained by EFM and an independent chemical (i.e., non-electrochemical) method. The chemical method of confirmation of the corrosion rates involved determination of the dissolved Cu2+, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of chemical analysis. Nyquist plots exhibited a high frequency depressed semicircle followed by a straight line portion (Warburg diffusion tail) in the low-frequency region. The impedance data were interpreted according to two suitable equivalent circuits. The kinetics of dissolved O2 reduction and hydrogen evolution reactions on copper surface were also studied in O2-saturated 0.50 M H2SO4 solutions using polarization measurements combined with the rotating disc electrode (RDE). The Koutecky-Levich plot indicated that the dissolved O2 reduction at the copper electrode was an apparent 4-electron process.  相似文献   

3.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

4.
The present article describes the inhibition effect of amino acids cysteine (Cys), methionine (Met) and alanine (Ala), towards the corrosion of lead-alloy (Pb-Ca-Sn) in H2SO4 solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement and scanning electron microscopy (SEM) methods. The influence of inhibitor concentration, temperature and time on inhibitory behavior of the amino acids was investigated. The corrosion data including corrosion current density (Icorr), corrosion potential (Ecorr) and charge transfer resistance (Rct) were determined from Tafel plots and EIS. Recording impedance spectra showed that the charge transfer resistance is increased by increasing adsorption time. The SEM micrographs revealed that the corroded surface area is decreased in the presence of amino acids. Meanwhile, the inhibition efficiency (IE) was found to be depending on the type of amino acid and its concentration. The IE for 0.1 M Cys in 0.5 M H2SO4 is greater than 96%. Adsorption isotherms were fitted by Langmuir isotherm.  相似文献   

5.
The corrosion inhibition characteristics of non-ionic surfactants of the TRITON-X series, known as TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on iron in 1.0 M HCl solution were studied. Measurements were conducted in 1.0 M HCl solutions without and with various concentrations of the three selected surfactants using chemical (ICP-AES method of analysis of dissolved cations) and electrochemical (Tafel polarisation and EFM) techniques at 25 °C. These measurements were complemented with SEM and EDX examinations of the electrode surface. Polarisation data showed that the non-ionic surfactants used in this study acted as mixed-type inhibitors with cathodic predominance. The protection efficiency increased with increase in surfactant concentration. Maximum protection efficiency of the surfactant was observed at concentrations around its CMC. From their molecular structure, these surfactants may adsorb on the metal surface through two lone pairs of electrons on the oxygen atoms of the hydrophilic head group.  相似文献   

6.
A newly synthesized glycine derivative (GlyD1), 2-(4-(dimethylamino)benzylamino)acetic acid hydrochloride, was used to control mild steel corrosion in 4.0 M H2SO4 solutions at different temperatures (278–338 K). Tafel extrapolation, linear polarization resistance (LPR) and impedance methods were used to test corrosion inhibitor efficiency. An independent method of chemical analysis, namely ICP-AES (inductively coupled plasma atomic emission spectrometry) was also used to test validity of corrosion rate measured by Tafel extrapolation method. Results obtained were compared with an available glycine derivative (GlyD2) and glycine (Gly). Tafel polarization measurements revealed that the three tested inhibitors function as mixed-type compounds. The inhibition efficiency increased with increase in inhibitor concentration and decreased with temperature, suggesting the occurrence of physical adsorption. The adsorptive behaviour of the three inhibitors followed Temkin-type isotherm and the standard free energy changes of adsorption () were evaluated for the three tested inhibitors as a function of temperature. The inhibition performance of GlyD1 was much better than those of GlyD2 and Gly itself. Results obtained from the different corrosion evaluation techniques were in good agreement.  相似文献   

7.
The protection influence of glycine (Gly) and a one of its derivatives, namely 2-(bis(2-aminoethyl)amino) acetic acid, designated here as GlyD; where GlyD stands for “glycine derivative”, against cold rolled steel (CRS) corrosion was studied in aerated stagnant 1.0 M HCl solutions at 25 °C. Measurements were conducted under various experimental conditions using Tafel polarization, linear polarization and impedance techniques. These studies have shown that Gly and GlyD are very good “green”, mixed-type inhibitors. GlyD is more effective than Gly itself in inhibiting the acid corrosion of CRS. Electrochemical frequency modulation (EFM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method of analysis are also presented here for monitoring corrosion. Corrosion rates obtained from both EFM and ICP-AES methods are comparable with those recorded using Tafel extrapolation method, confirming validation of corrosion rates measured by the latter. Adsorption via H-bond is discussed here, based on the presence of oxide film on the electrode surface as well as the number of NH linkages in the inhibitor molecule. Quantum chemical method was also employed to explore the relationship between the inhibitor molecular properties and its protection efficiency. The density function theory (DFT) is used to study the structural properties of Gly and GlyD in aqueous phase in an attempt to understand their inhibition mechanism. The protection efficiencies of these compounds showed a certain relationship to highest occupied molecular orbital (HOMO) energy, Mulliken atomic charges and Fukui indices.  相似文献   

8.
The inhibition effect of glycine (Gly) towards the corrosion of low alloy steel ASTM A213 grade T22 boiler steel was studied in aerated stagnant 0.50 M HCl solutions in the temperature range 20-60 °C using potentiodynamic polarization (Tafel polarization and linear polarization) and impedance techniques, complemented with scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented here. Experimental corrosion rates determined by the Tafel extrapolation method are compared with corrosion rates obtained by electrochemical, namely EFM technique, and chemical (i.e., non-electrochemical) method for steel in HCl. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of analysis. Corrosion rates (in mm y−1) obtained from the electrochemical (Tafel extrapolation and EFM) and the chemical method, ICP, are in a good agreement. Polarization studies have shown that Gly is a good “green”, mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive agents. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increases with increase in Gly concentration, while it decreases with solution temperature. Temkin isotherm is successfully applied to describe the adsorption process. Thermodynamic functions for the adsorption process were determined.  相似文献   

9.
In this work, the dodecyl cysteine hydrochloride surfactant was synthesized. The surface properties of this surfactant were studied using surface tension technique. The nanostructure of this surfactant with the prepared gold nanoparticles was investigated using TEM technique. The synthesized surfactant and its nanostructure with the prepared gold nanoparticles were examined as non-toxic corrosion inhibitors for carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that the percentage inhibition efficiency (η%) for each inhibitor increases with increasing concentration until critical micelle concentration (CMC) is reached. The maximum inhibition efficiency approached 76.6% in the presence of 175 ppm of dodecyl cysteine and 90.8% in the presence of the same concentration of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Polarization data indicate that the selected additives act as mixed type inhibitors. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. Analysis of the impedance spectra indicates that the charge transfer process mainly controls the corrosion process of carbon steel in 2 M HCl solution both in the absence and presence of the inhibitors. Adsorption of these inhibitors on carbon steel surface is found to obey the Langmuir adsorption isotherm. From the adsorption isotherms the values of adsorption equilibrium constants (Kads) were calculated. The relatively high value of (Kads) in case of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles reveals a strong interaction between the inhibitor molecules and the metal surface.  相似文献   

10.
Ionic liquids with chemical formula 1,3-dioctadecylimidazolium bromide and N-Octadecylpyridinium bromide were synthesized by conventional and microwave-assisted reactions, respectively. Ionic liquids tested as corrosion inhibitors after polarization curves displayed corrosion protection efficiency within 82-88% at 100 ppm for mild steel in a 1 M aqueous solution of sulfuric acid. Standard free energy indicated that corrosion inhibition occurred by a chemical adsorption process. Surface analysis (SEM, EDX) completed by XRD and Mössbauer spectroscopy indicated the presence of carbon species pertaining to inhibitor and corrosion products, which was rationalized in an inhibition mechanism.  相似文献   

11.
A heterocyclic Schiff base furoin thiosemicarbazone was tested for its corrosion inhibition towards mild steel in 1 M HCl solution using weight loss, Tafel polarization and electrochemical impedance spectroscopy techniques. Furoin thiosemicarbazone revealed good corrosion inhibition efficiency even at low concentrations towards mild steel in HCl medium. Comparison of corrosion inhibition efficiency of Schiff base and its parent amine and effect of temperature on inhibition efficiency were also investigated. The adsorption of furoin thiosemicarbazone on mild steel surface obeys Langmuir isotherm.  相似文献   

12.
This paper discusses the validity and accuracy of the Tafel extrapolation method for determining corrosion rates of carbon steel in 1, 2 and 3 M HCl solutions open to air. Corrosion rates obtained from polarization experiments were compared with that of weight loss method. For analysing data obtained from polarization experiments electrochemical impedance spectroscopy (EIS) measurements were performed before polarization experiments. The results showed that formation of a corrosion product film and increasing the polarization resistance (Rp) of this film with time cause the corrosion rates obtained from Tafel extrapolation tend to be higher than corrosion rates obtained from weight loss test.  相似文献   

13.
The inhibition performance of two imidazoline derivatives, 3-ethylamino-2-undecyl imidazoline (EUI) and chloride-3-ethylamino-3-(2,3-two hydroxyl) propyl-2-undecyl imidazoline sodium phosphate(CEPIP), for Q235 steel in CO2 saturated solution at 298 K have been tested by weight loss experiment and electrochemical techniques. The adsorption behavior of the two inhibitors on Fe surface has been studied using molecular dynamics (MD) method and density functional theory. The results indicated that the two imidazoline derivatives could both adsorb on the Fe surface firmly through the imidazoline ring and heteroatoms, the two inhibitors both have excellent corrosion inhibition performance.  相似文献   

14.
The corrosion inhibition of mild steel in 1 M HCl solution by cefotaxime sodium has been studied by Tafel polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The inhibitor showed 95.8% inhibition efficiency at optimum concentration 300 ppm. Results obtained revealed that inhibition occurs through adsorption of the cefotaxime on metal surface without modifying the mechanism of corrosion process. Potentiodynamic polarization studies suggest that it is a mixed type of inhibitor. Electrochemical impedance spectroscopy techniques were also used to investigate the mechanism of corrosion inhibition.  相似文献   

15.
K.F. Khaled 《Corrosion Science》2010,52(10):3225-3234
Inhibition performance of three amino acids, namely l-methionine (MIT), l-methionine sulfoxide (MITO) and l-methionine sulfone (MITO2), as corrosion-safe inhibitors for copper surface in 1.0 M nitric acid was investigated by weight loss, dc polarization and ac impedance techniques. A significant decrease in the corrosion rate of copper was observed in the presence of the investigated compounds. The reactivates of the compounds under investigation were analyzed through Fukui functions, to explain their inhibition performance. Simulation techniques incorporating molecular mechanics and molecular dynamics were used to simulate the adsorption of l-methionine derivatives, on copper (1 1 1) surface in nitric acid.  相似文献   

16.
4-substituted anilinomethylpropionate namely 3-anilinomethylpropionate (Inh-1), 3-(4-methylanilino)methylpropionate (Inh-2) and 3-(4-chloroanilino) methylpropionate (Inh-3) were synthesized and investigated as corrosion inhibitors of mild steel in 1 N HCl solution using weight loss, polarization resistance, Tafel polarization and electrochemical Impedance spectroscopy techniques. The inhibition efficiency of the synthesized inhibitors followed the order Inh3 > Inh2 > Inh1. The inhibiting action of the all inhibitors was found to depend on electronic nature of functional groups present in inhibitors. Potentiodynamic polarizations suggest that all inhibitors are mixed type in nature. Electrochemical impedance spectroscopy was also used to investigate the mechanism of corrosion inhibition.  相似文献   

17.
In this paper, the inhibition ability of benzimidazole and its derivatives against the corrosion of mild steel in 1M HCl solution was studied. The change of impedance parameters observed by variation of inhibitors concentration within the range of 50-250 ppm was an indication of their adsorption. The thermodynamic adsorption parameters proposed that these inhibitors retard both cathodic and anodic processes through physical adsorption and blocking the active corrosion sites. The adsorption of these compounds obeyed the Langmuir’s adsorption isotherm. The inhibition efficiency was increased with inhibitor concentration in the order of 2-mercaptobenzimidazole > 2-methylbenzimidazole > benzimidazole, which is in accordance with the variation of apparent activation energy of corrosion.  相似文献   

18.
The corrosion inhibition of mild steel in 1.0 M HCl solution by four Schiff bases was investigated using weight loss and electrochemical measurements and quantum chemical calculations. All compounds showed >90% inhibition efficiency at their optimum concentrations. The activation energy (Ea) of corrosion and other thermodynamic parameters were calculated to elaborate the mechanism of corrosion inhibition. The adsorption of the inhibitors on the mild steel surface follows Langmuir isotherm model. Polarization studies indicated that all studied inhibitors are mixed type. The computed quantum chemical properties viz., electron affinity (EA) and molecular band gap (ΔEMBG) show good correlation with experimental inhibition efficiencies.  相似文献   

19.
The inhibition effect of new heterocyclic compounds, namely 2-aryl-benzothiazin-3-one (P1) and 3-aryl-benzothiazin-2-one (P2) on mild steel corrosion in 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration and molecular structure of the investigated compounds. It is also found that the inhibition of P1 is greater than P2. The molecular structure effect on the corrosion inhibition efficiency was investigated using DFT calculations. The structural and electronic parameters were calculated and discussed. The obtained results show that the experimental and theoretical studies agree well and confirm that P1 is the better inhibitor.  相似文献   

20.
K.F. Khaled 《Corrosion Science》2010,52(9):2905-2916
Chemical and electrochemical measurements incorporated with quantum chemical calculations and molecular dynamics simulations were used to study the corrosion inhibition characteristics of some thiosemicarbazone derivatives on the inhibition of aluminum corrosion in 1.0 M HNO3. Polarization curves demonstrated that the thiosemicarbazone derivatives were of mixed-type inhibitors. EIS plots indicated that the addition of thiosemicarbazone derivatives increases the charge-transfer resistance of the corrosion process, and hence the inhibition performance. The molecular dynamics simulation results show that the three thiosemicarbazone derivatives can adsorb on the A2O3 (1 1 1) surface through the sulphur and nitrogen atoms as well as π-electrons in the pyridyl structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号