首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ce addition to a hyperduplex stainless steel increased its resistance to pitting corrosion because of the formation of stable Ce oxides and a decrease in the area of microcrevices between the matrix and inclusions that act as pit initiation sites. In addition, Cr-enriched zones were formed around Ce oxides with low Cr content in the Ce added alloy. Pitting corrosion in the base alloy initiated at the microcrevice and propagated to Cr oxides, which deteriorated the pitting corrosion resistance. However, pitting corrosion in the Ce added alloy propagated not to the stable Ce oxides but to the matrix.  相似文献   

2.
A new high Mn-Ni free (duplex stainless steel) DSS containing 18Cr-6Mn-1Mo-0.2N has been developed by examining the effects of manganese on the corrosion and mechanical properties of high Mn SSs containing 18Cr-4 ∼ 11Mn-0 ∼ 2Ni-0 ∼ 1Mo-0.2N. The alloy with 45% ferrite is found to be an optimum alloy with much higher mechanical strength and similar corrosion resistance compared with those of standard SS304. In addition, the alloy was free of precipitation of sigma phase and Cr-nitride when exposed to high temperatures due primarily to relatively low contents of Cr, N and Mo. With an increase in Mn content, the resistance to pitting and metastable pitting corrosion of high Mn DSS decreased since the number of (Mn, Cr) oxides, acting as preferential sites of pitting, increased with the Mn content.  相似文献   

3.
To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.  相似文献   

4.
To elucidate the effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of alloys, potentiodynamic and potentiostatic polarization tests, a SEM-EDS analysis of inclusions, and thermodynamic calculations of the formation of inclusions were conducted. The addition of copper to the base alloy increased the number and area of numerous (Mn, Cr, (Al), (Fe)) oxides and oxy-sulfides due to an increase in the activity of chromium and resulted in decreased pitting resistance. The thermodynamic prediction of the formation of inclusions was in good agreement with the experimental results.  相似文献   

5.
During the initial stage of aging heat treatment at 850 °C, inclusions such as (Cr, Mn, Al) oxides and (Cr, Mn, Al, Fe) oxides of a hyper duplex stainless steel act as preferential precipitation sites for the chi phase like ferrite/austenite phase boundaries and ferrite/ferrite grain boundaries. The chi phase is precipitated around the inclusions due to the blocking and piling up the alloying elements such as Mo and W around the inclusions. The precipitation of Mo and W enriched chi phase around the inclusions decreases the intergranular corrosion resistance due to the formation of Mo and W depleted zones.  相似文献   

6.
The stress corrosion cracking (SCC) behavior of Fe18Cr10Mn1Ni(0.3–0.8)N alloys was investigated in aqueous NaCl environment by using slow strain rate test method, and the results were compared to those of Ni-free counterparts. The addition of N tended to improve the SCC resistance of Fe18Cr10Mn- and Fe18Cr10Mn1Ni-based alloys. The alloying Ni magnified the beneficial effect of N on the SCC susceptibility and, eventually, the Fe18Cr10Mn0.8N alloy was immune to SCC in 2 M NaCl solution at 50 °C. The SCC behavior of the present alloys was found to be closely related to the repassivation tendency and the resistance to pitting corrosion.  相似文献   

7.
Stress corrosion cracking (SCC) susceptibility of austenitic Fe18Cr10Mn alloys with 0.3N, 0.6N and 0.3N0.3C was investigated in aqueous chloride environment using a slow strain rate test method. The SCC susceptibility of Fe18Cr10Mn alloys in 2 M NaCl solution at 50 °C under constant anodic potential condition decreased with increase in N content from 0.3 to 0.6 wt%, and with addition of 0.3 wt% C to the Fe18Cr10Mn0.3N alloys. The present study strongly suggested that the beneficial effects of N and C on the SCC behavior of Fe18Cr10Mn alloys would be associated with the resistance to pitting corrosion initiation and the repassivation kinetics.  相似文献   

8.
Austenitic stainless steels with up to 6.1 wt.% Mo were nitrided at 425 °C and examined in 0.1 M Na2SO4 without and with chlorides at pH 3.0 and 6.5. Nitrided steels exhibited an increased resistance to pitting, but at pH 3.0 they had a decreased resistance to general corrosion. After corrosion at pH 3.0 surface films contained chromium nitrides and oxides of Mo, Cr and Fe. It is proposed that the improved pitting resistance of nitrided steels is associated with the initially accelerated dissolution which leads to the accumulation of corrosion resistant CrN and of oxidised steel components.  相似文献   

9.
The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher Rct and Rp values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.  相似文献   

10.
T. Nishimura   《Corrosion Science》2008,50(5):1306-1312
A high Si, Al type ultrafine-grained (UFG) weathering steel was produced by the multi-pass warm rolling method, and its corrosion resistance was estimated by a cyclic wet/dry corrosion test using chloride ions. The Si- and Al-bearing UFG steel exhibited excellent corrosion resistance in comparison with Si–Mn carbon steel (SM).

EPMA and TEM analyses showed that Si and Al mainly exist in nano-scale iron complex oxides in the inner rust layer formed on the developed steel. The Al K X-ray spectrum of Al2O3 and metallic Al had different peak positions due to chemical shifts, and that of the test sample was the same as that of Al2O3 in the EPMA analysis. This result suggested that Al was present in the complex oxides as Al3+. In the same way, Si was identified as an intermediate state such as Si2+ in the complex oxides of the inner rust.

EIS (electrochemical impedance spectroscopy) measurement of the corrosion test samples revealed that the rust resistance (Rrust) and corrosion reaction resistance (Rt) of the developed steel were much larger than those of SM. It was found that nano-scale complex iron oxides formed in the lower layer of iron rust in the developed steel, resulting in increased Rrust and Rt, and finally suppressing corrosion.  相似文献   


11.
李涛  曹阁  刘毅  赵慧颖 《表面技术》2017,46(10):29-34
目的提高7A04铝合金的耐腐蚀性能。方法采用周期浸润腐蚀试验模拟海洋大气环境,研究了不同稀土Ce含量的7A04铝合金的腐蚀行为及规律。通过金相显微镜和扫描电子显微镜,观察了不同试样的组织和夹杂物形貌。采用失重法和电化学阻抗技术,分析了试样的腐蚀动力学规律及电化学行为特性。结果在Ce质量分数分别为0%、0.39%和0.81%的7A04铝合金中,稀土Ce的加入量为0.39%时,其晶粒最细小,第二相与夹杂最少且分布最均匀,合金的基体组织得到了改善。稀土7A04铝合金的腐蚀失重明显低于不含稀土Ce的7A04铝合金,且锈层电阻升高,其中含0.39%稀土Ce的7A04铝合金的锈层电阻最高。结论三种7A04铝合金均发生了明显的局部腐蚀,主要为点蚀。稀土Ce的加入,改变了非稀土铝合金中的T相和S相,生成了新的细小的块状金属间化合物,改善了组织的均匀性,提高了其腐蚀锈层电阻,增加了锈层对基体的保护能力,使铝合金耐海洋大气腐蚀性能提高。在三种稀土Ce含量的铝合金中,含0.39%稀土Ce的7A04铝合金的耐蚀性最佳。  相似文献   

12.
稀土元素Ce和La合金化对AM60镁合金腐蚀行为的影响   总被引:3,自引:0,他引:3  
采用电子探针-能谱分析,场发射扫描电镜X射线衍射等方法研究了稀土元素Ce和La合金化对AM60镁合金结构和耐蚀性能的影响.结果表明,Ce和La的加入可在AM60镁合金中形成了富含稀土元素的γ相(MgAlRE);能有效抑制析氢,提高镁合金的耐蚀性能;改善镁合金在含Cl-溶液中的耐蚀性能;腐蚀产物膜的晶态主要成分为铝和锰的氧化物,并含有少量的稀土氧化物和氢氧化物.  相似文献   

13.
Al-Mn coatings with different contents (0-41 at.%) were deposited on glass slides by magnetron co-sputtering. These coatings were characterised, before and after immersion tests, by X-ray diffraction, scanning electron microscopy (SEM) and electron probe microanalysis. The electrochemical measurements in a neutral saline solution showed that the pitting corrosion resistance of Al-Mn coatings increased with increasing Mn content as the pitting corrosion potentials are progressively shifted towards positive values. The immersion tests reveal that for all Mn contents, Al-Mn coatings keep a sacrificial character compared with steel. For Mn content above 26 at.%, XRD analysis showed the formation of an amorphous phase. This structure would be responsible for the high increase of the hardness of Al-Mn coatings and of the stabilisation of their open circuit potentials during the 48 h immersion tests.  相似文献   

14.
The pitting corrosion of intermetallic compound Ni3(Si,Ti) was investigated as functions of test temperature and chloride concentration in sodium chloride solutions by using a potential step method. In addition, the pitting corrosion of solution-annealed austenitic stainless steel type 304 and pure nickel was also studied under the same experimental condition for comparison. The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration and test temperature. A critical chloride concentration below which no pitting corrosion took place was found to exist and to decrease with increasing test temperature. The specific pitting potential at the critical chloride concentration also decreased with increasing test temperature. In addition, the pitting potential at various constant chloride concentrations above the critical chloride concentration decreased with increasing test temperature. The pitting potential of Ni3(Si,Ti) was higher than pure nickel, but lower than that of type 304.  相似文献   

15.
Potentiodynamic measurements together with SEM were used to analyze susceptibility to pitting corrosion of 13CrNiMo plate metals. Volume fractions of austenite in tempered conditions affect pitting resistance. Characteristic potentials (critical pitting and repassivation) increase according to the retained austenite content. Results correspond to a structural refinement resulting from a double tempering procedure. A comparison is made with results from weld metal samples. The importance of this evaluation is to be able to determine pitting resistance, either in a service application, or in laboratory test programs.  相似文献   

16.
The surface corrosion behavior of an AA2024-T3 aluminium alloy sheet after friction stir welding was investigated by using an “in-situ observation” method. SEM observations showed that the density and degree of the pitting corrosion in the shoulder active zone were slightly larger compared to the other regions on the top surface. The origins of the pitting corrosion were in the regions between the S phase particles and the adjacent aluminium base. The effect of Al-Cu-Fe-Mn-(Si) intermetallic compounds on the pitting corrosion was attributed to their high self-corrosion potential which induced the anodic dissolution of the surrounding aluminium matrix.  相似文献   

17.
测定了铸态16Mn,25MnTiB,Cr24NiTSi2N以及FeCrAl中的稀上合金化量。涂敷法自射线照相结果表明,在16Mn与25MnTiB中,分布于珠光体中的Ce比分布于铁素体中的Ce多。在FeCrAl耐热合金与Cr24NiTSi2N耐热钢中,当稀土含量高时,则稀土元素在晶界有明显的富集;在FeCrAl的不同晶粒内稀土的含量不同,具有微观的不均匀性。  相似文献   

18.
Copper containing 6000-series aluminium alloys may become susceptible to intergranular corrosion (IGC) as a result of improper thermomechanical processing. Effect of cooling rate after solution heat treatment on the corrosion behaviour of a model AlMgSi(Cu) alloy of nominal composition (wt%) 0.6 Mg, 0.6 Si, 0.2 Fe, 0.2 Mn and 0.1 Cu was investigated. Slow cooling rates were simulated by isothermal treatment for predetermined times in lower temperature baths immediately after solution heat treatment. Treatment for 10-100 s at temperatures below 400 °C introduced susceptibility to IGC. Longer heat treatment at the same temperatures introduced susceptibility to pitting. A corrosion resistant time zone was found between the zones of IGC and pitting at temperatures lower than 350 °C. Quenching in water after solution heat treatment prevented IGC. IGC was related to microgalvanic coupling between the noble Q-phase (Al4Mg8Si7Cu2) grain boundary precipitates and the adjacent depleted zone. Pitting was attributed to coarse particles in the matrix. Possible mechanisms causing the corrosion resistant intermediate zone are discussed. The results indicate possible methods for obtaining increased corrosion resistance of similar alloys by proper thermal processing.  相似文献   

19.
The present investigation was undertaken to analyze the effects of isothermal ageing treatments, carried out between 700 and 900 °C for a variety of times up to two weeks and followed by water quenching, on the microstructure and on the localized corrosion resistance of a superduplex stainless steel, SAF 2507.The quantitative metallography coupled with X-ray diffraction techniques was adopted to follow the microstructural evolution, together with SEM microscopy.Electrochemical potentiodynamic tests, as cyclic polarization curves recorded in sodium chloride solutions, together with weight loss measurements were employed to evaluate the susceptibility of the aged specimens to pitting corrosion.The influence of the transformation of ferrite into secondary austenite and sigma phase and of other microstructural variations, as chromium nitrides precipitation, on the stability of the passive film is shown. The susceptibility of the aged alloy to pitting corrosion phenomena, is related to sigma phase precipitation in association to the secondary austenite formation, which lead to a noticeable Cr depletion at grain boundaries.  相似文献   

20.
The effect of rare earth elements Ce and La on the evolution behavior of inclusions in HRB400E steel was studied through experimental observations and thermodynamic calculations. Neutral salt spray corrosion experiments were also conducted to investigate the effect of Ce–La on the corrosion resistance of steel. The results showed that the typical inclusions in steel without rare earth were MnS and MnO–SiO2. A small amount of Mn–Si–O–S inclusions was also observed. After adding rare earth, the typical inclusions were transformed into isolated (Ce,La)2O2S, (Ce,La)2O3 + MnS, and (Ce,La)2O2S + MnS complex inclusions. The thermodynamic calculations indicated that the rare earth elements in molten steel preferentially reacted with MnO–SiO2 inclusions and dissolved oxygen and sulfur to form (Ce,La)2O3 and (Ce,La)2O2S. Small amounts of [S] and [Mn] adhered to the surface of the nucleated rare earth inclusions to form complex inclusions. After Ce–La treatment, the corrosion rate of the steel decreased from 3.491 to 1.992 mm year−1, and the corrosion resistance was improved. The change in corrosion behavior is due to the modification of the inclusions into rare earth inclusions with good compatibility with the steel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号