首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Threshold stress intensity factor for stress corrosion cracking of heat affected zone (HAZ) of mild steel in caustic solution has been determined using circumferential notch tensile (CNT) technique. HAZ microstructure produced during manual metal arc welding of grade 250 steel was simulated over a length of 35 mm of CNT specimens, using a thermo-mechanical simulator. Inter-granular stress corrosion cracking has been confirmed with scanning electron microscope. The results presented here validate the ability of CNT technique for determination of KISCC of HAZ and base metal.  相似文献   

2.
A fracture mechanics-based novel approach, i.e. circumferential notch tensile (CNT) testing has been employed for determination of threshold stress intensity factor for susceptibility of engineering materials to stress corrosion cracking (KISCC) using small specimens. Using CNT technique, KISCC of a carbon steel at an open circuit potential (Ecorr) in 500 g L−1 NaOH at 100 °C was determined to be 42.9 MPa m1/2. In order to establish the application of the CNT technique in understanding the mechanistic aspects of caustic cracking as well as for developing guidelines for mitigation, tests have also been performed under the imposed electrochemical potentials. An imposed potential in the active–passive potential regime (Ea–p) caused an extremely rapid failure (than observed at Ecorr) whereas, at an imposed potential in the passive region (Ep), the specimen did not fail even after relatively very long exposure time. The fractography of the CNT specimens tested at Ecorr and Ea–p presented evidence of SCC. The study has established the use of experimental CNT testing as a simple, relatively fast and cost-advantageous approach for generating the KISCC data, which are also consistent with the electrochemical mechanism for caustic cracking.  相似文献   

3.
Mill-annealed AISI type 316LN stainless steels, received from two different sources (one indigenous (SS-2) and the other foreign (SS-1)), were tested for stress corrosion cracking (SCC) resistance in a boiling acidified environment of NaCl. SCC results indicated a remarkably lower value of plateau crack growth rate (PCGR) and higher values of KISCC and JISCC for SS-2, which was attributed to the lower effective grain boundary energy resulting from a higher amount of copper in it. Cold working reduced KISCC and PCGR; while thermal aging and welding decreased KISCC and increased PCGR vis-à-vis the annealed material.  相似文献   

4.
Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of sensitized stainless steels of types 304, 310 and 316 were investigated as a function of applied stress at different test temperatures in boiling saturated magnesium chloride (MgCl2) solutions under a constant applied stress condition. The stress dependence of fracture appearance and three parameters of time to failure (tf), steady-state elongation rate (lss) and transition time to time to failure ratio suggests that types 304 and 310 suffered SCC, while type 316 suffered only HE. It was also found that the applied stress dependence of three parameters for the sensitized types 304 and 310 was almost similar to that of the solution-annealed stainless steels, whereas that of type 316 showed a clear difference between sensitized and solution-annealed specimens. The relationships between the logarithms of the time to failure and the steady-state elongation rate became a straight line for all stainless steels. However, its slope depended upon the fracture mode: −2.0 for SCC and −1.5 for HE. This showed that the steady-state elongation rate was a good parameter for predicting the time to failure for the stainless steels in the MgCl2 solutions. The results obtained were explained in terms of martensite transformation, hydrogen entry site, and sensitization.  相似文献   

5.
Stress corrosion tests have been conducted to assess the performance of a high strength steel, PH13-8 stainless steel, being considered for advanced steam turbine blades relative to that of a conventional blade steel, FV566. The higher strength steel had a higher threshold stress intensity factor, KISCC, under normal water chemistry conditions (albeit aerated) but in higher chloride solutions the KISCC was relatively low for both alloys with the threshold for the FV566 being slightly lower than that of the PH13-8 steel. It is proposed that hydrogen assisted cracking is the mechanism of failure for both steels. The higher threshold for the PH13-8 steel is considered to be associated with the higher alloying content of the alloy constraining hydrogen uptake as a consequence of enhanced refilming kinetics. The crack growth rate for the higher strength steel was about an order of magnitude greater than that for the FV566 steel, which is consistent with the greater sensitivity to hydrogen once the hydrogen gets into the steel. For both steels, deaeration of the solution to reflect continuous on-load conditions in service caused the growing crack to arrest.  相似文献   

6.
Compact tension specimens of nitrogen‐added AISI type 316 austenitic stainless steel and its weld metal were subjected to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensity factor (KISCC) and J‐integral (JISCC) were taken as those values of KI and JI at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis‐à‐vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress‐assisted dissolution of delta‐ferrite or its interface with austenite, was observed.  相似文献   

7.
《Corrosion Science》1986,26(1):7-14
Practically all constructional steels are working under applied loads and environments. Below some stress levels the deterioriation of the material occurs by typical corrosion modes. Modern constructions are often loaded with enough high stresses to promote catastrophic failures due to stress corrosion crack propagation. Actually the whole range of metallic materials used in reliable constructions which are exposed to corrosive environments should be tested for their sensitivity to stress corrosion cracking. By measuring the material constant KISCC (critical stress intensity factor for stress corrosion cracking) it is possible to construct the reliable parts working in a safe range of stresses, which cannot be computed knowing yield strength of the material only. For measuring KISCC values of high strength CrMnSiNi and CrMo steels, original stands were built and long-term (> 103h) tests applied by means of the cantilever beam method. Sensitivity of tested steels to stress corrosion cracking was expressed as a ratio KISCC:KIC. Some other observations concerning kinetics of crack propagation and other properties of the materials have been carried out.  相似文献   

8.
A dislocation-based boundary element model was used to simulate intergranular stress corrosion crack propagation in virtual microstructures. A Monte Carlo approach was used in which the propagation of approximately 100 cracks was calculated for different Voronoi generated microstructures. At every simulation step the model gave the position of the crack tip together with stress intensity factors KI and KII. Using a simple power-law-type crack growth rate da/dt=DpKmp, the depth of each particular crack can be calculated knowing the time the samples were exposed to the stress and corrosive environment. Existing experimental data giving crack depth distributions for Alloy 600, and XM-19 and 304 stainless steel are investigated and the best-fit crack growth law established. Alloy 600 in a light water reactor environment and XM-19 in high-temperature water both lead to mp = 3. While for 304 stainless steel in the more aggressive K2S4O6/H2SO4 (pH 2) an exponent mp = 0.8 was found.  相似文献   

9.
To investigate the influence of local stress on initiation behavior of stress corrosion cracking (SCC) for sensitized Type 304 stainless steel, cracking process during constant load SCC test was monitored and recorded with an in situ crack observation system. The changes in number of cracks, sum of crack length and cracked area on the specimen surface with test time were identified from the cracking images analyzed by image processing. In the SCC tests, many cracks were initiated and coalesced on the surface, and the coalescence of cracks played an important role to primary crack growth. The influence of applied stress on crack initiation was different from that on crack growth. In addition, there was a difference between influences of stress on incubation period to crack initiation and crack initiation rate. Due to these differences, a stress of 0.8Sy was thought to cause relatively many cracks compared with 0.5Sy and 1.3Sy (Sy = 200 MPa). Through quantitative estimation of distribution in local stress around a crack by finite element analysis method, it was deduced that the crack initiation is influenced not only by bulk stress applied at the end of the body, but also by local stress formed around pre-existing cracks. According to pre-existing cracks, stress enhancement accelerates the crack growth, while the stress relaxation causes the suppression of new crack initiation. Based on the experiment and analysis results, three types of growth process were suggested, which are caused by propagation itself, by new crack initiation at vicinity of the crack tip, and by coalescence of approaching cracks. Then, it was concluded that, in order to predict/simulate the cracking behavior of this SCC system, the influence of local stress on the crack initiation should be taken into account.  相似文献   

10.
Exfoliation corrosion was assessed in three high strength aluminium alloys by measuring the force generated by voluminous corrosion products and their stress corrosion behaviour was studied in tests on double cantilever specimens. There was an inverse linear relationship between the corrosion product forces and the KISCC values for stress corrosion cracking in these materials, providing further evidence for a common corrosion mechanism. Exfoliation and SCC were both dependent on the rate of intergranular corrosion, which is controlled in these alloys by the grain boundary precipitates and the resistance to both forms of corrosion was improved in alloys with an over-aged heat treatment condition.  相似文献   

11.
The stress corrosion crack velocity and stress corrosion threshold stress intensity, KIsce, at potentials at or slightly different to the open circuit potential have been measured under potentiostatic control for 18Cr10Ni0.5Ti stainless steel in aqueous 46% LiCl at 105°C. In all cases, both stage 1 and stage 2 growth rate dependence on K is demonstrated. For potential vs. corrosion potential values 360 to ?50mV, a linear dependence of stress corrosion threshold stress intensity on the square root of the polarization applied was found.  相似文献   

12.
Influence of the environment on the cracking toughness and crack propagation in high-strength steels The crack toughness of four fine grained steels and one high strenght steel of different heat-treatments are investigated in 3% NaCl solution depending from the electrochemical polarisation. The steels are of commerical compositions, their strengths are in the range of 635 to 1460 N/mm2. The stress intensity factors, KISCC for slow crack growth are determined by a method of fracture mechanics. For these investigations the DCB-specimen with an incipient crack is used. The KISCC-values generally decrease with increasing strength of the steels, but they show different susceptibility for crack growth under cathodic and anodic polarisation. Outdoor experiments conducted in seawater covering a period of one year confirm the results of laboratory.  相似文献   

13.
C.L. Lai  W. Kai 《Corrosion Science》2009,51(2):380-386
The effects of cold-rolling (20% thickness reduction) and sensitization treatment (600 °C/10 h) on the microstructure, tensile properties and susceptibility to stress corrosion cracking of 304 stainless steel in 80 °C MgCl2 (40 wt.%) solution were investigated. The increase in hydrogen traps, which retarded hydrogen diffusion to the strained region, accounted for the low loss in notched tensile strength (NTS) of such a cold-rolled specimen, as compared to the solution-treated specimen in the corrosive environment. By contrast, the high NTS loss of sensitized specimens in MgCl2 solution was attributed mainly to the formation of stress-induced martensite near grain boundary regions.  相似文献   

14.
The change in the mechanism of stress corrosion cracking with test temperature for Type 304, 310 and 316 austenitic stainless steels was investigated in boiling saturated magnesium chloride solutions using a constant load method. Three parameters (time to failure; tf, steady-state elongation rate; lss and transition time at which a linear increase in elongation starts to deviate; tss) obtained from the corrosion elongation curve showed clearly three regions; stress-dominated, stress corrosion cracking-dominated and corrosion-dominated regions. In the stress corrosion cracking-dominated region the fracture mode of type 304 and 316 steels was transgranular at higher temperatures of 416 and 428 K, respectively, but was intergranular at a lower temperature of 408 K. Type 310 steel showed no intergranular fracture but only transgranular fracture. The relationship between log lss and log tf for three steels became good straight lines irrespective of applied stress. The slope depended upon fracture mode; −2 for transgranular mode and −1 for intergranular mode. On the basis of the results obtained, it was estimated that intergranular cracking was resulted from hydrogen embrittlement due to strain-induced formation of martensite along the grain boundaries, while transgranular cracking took place by propagating cracks nucleated at slip steps by dissolution.  相似文献   

15.
Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of the sensitized stainless steels of type 304, 310 and 316 were investigated as a function of test temperature in boiling saturated magnesium chloride (MgCl2) solutions under a constant applied stress condition. The test temperature dependence of fracture appearance and three parameters of time to failure (tf), steady-state elongation rate (lss) and transition time to time to failure ratio (tss/tf) suggests that type 304 suffered SCC and HE, while type 316 suffered only HE and type 310 SCC. It was also found that the test temperature dependence of three parameters for the sensitized type 304 and 310 was almost similar to that of the solution annealed stainless steels, whereas that of type 316 showed a clear difference between sensitized and solution annealed specimens. The relationships between the logarithms of the time to failure and the steady-state elongation rate became a straight line for all stainless steels. However, its slope depended upon the fracture mode; −2.0 for SCC and −1.5 for HE. This showed that the steady-state elongation rate was the parameter for predicting the time to failure for the stainless steels in the MgCl2 solutions. The results obtained were explained in terms of martensite transformation, hydrogen entry site, sensitization, and so on.  相似文献   

16.
Abstract

The distribution of residual stresses due to welding has been studied in maraging steel welds. Gas tungsten arc welding process was used and the effect of filler metal composition on the nature of residual stress distribution has been investigated using X-ray diffraction technique with Cr Kα radiation. Three types of filler materials were used, they include: maraging filler, austenitic stainless steel and medium alloy medium carbon steel filler metal. In the case of maraging steel weld, medium alloy medium carbon filler, the residual stress at the centre of the weld zone was more compressive while, less compressive stresses have been identified in the heat affected zone of the parent metal adjacent to the weld metal. But, in the case of austenitic stainless steel filler the residual stresses at the centre of the weld and heat affected zone were tensile. Post-weld aging treatment reduced the magnitude of stresses. The observed residual stress distribution across the weldments has been correlated with microstructure and hardness distribution across the weld.  相似文献   

17.
The stress corrosion cracking (SCC) growth kinetics for a cold worked 316L stainless steel was continuously monitored in high purity water at different temperatures and dissolved oxygen (DO) levels under a K (or Kmax) of 30 MPa m0.5. The total SCC test time was more than 8000 h to make sure the steady state crack growth rate under each test condition could be reached. Crack growth rate (CGR) increases with increasing temperature in the range 110-288 °C. A typical intergranular-cracking mode is identified. Depending on the previous test condition, especially the temperature, three kinds of crack growth kinetics, i.e., increasing with testing time then becoming steady, being constant during the whole period, or decreasing with test time then becoming steady, are identified and discussed. Time-dependent and testing history-dependent crack growth modes were confirmed in two series of tests in 2 ppm DO and 7.5 ppm DO pure water. The apparent activation energies are calculated and compared with other data in different environments under different applied loading levels for understanding the cracking mechanism.  相似文献   

18.
The influence of specimen orientation, stress intensity factor (KI), and iodine concentration on the iodine-induced stress corrosion cracking growth rates in Zircaloy-4 was investigated in iodized methanol solutions at ambient temperature. When KI is lower than 20 MPa.m1/2, the intergranular and mixed intergranular/transgranular crack propagation rates increase linearly with (KI  KI,th), KI,th being the onset of propagation stress intensity factor. The increase in iodine content induces an increase of the crack growth rate for a given KI, and a decrease of the KI,th. The specimen orientation is a second order parameter. A crack propagation law, depending on iodine content, is proposed.  相似文献   

19.
Titanium dioxide (TiO2) films have been deposited onto stainless steel substrates using atomic layer deposition (ALD) technique. Composition analysis shows that the films shield the substrates entirely. The TiO2 films are amorphous in structure as characterized by X-ray diffraction. The electrochemical measurements show that the equilibrium corrosion potential positively shifts from − 0.96 eV for bare stainless steel to − 0.63 eV for TiO2 coated stainless steel, and the corrosion current density decreases from 7.0 × 10− 7 A/cm2 to 6.3 × 10− 8 A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the TiO2 films provide good protection for stainless steel against corrosion in sodium chloride solution. The above results indicate that TiO2 films deposited by ALD are effective in protecting stainless steel from corrosion.  相似文献   

20.
Slow displacement rate tensile tests were carried out in a saturated H2S solution to investigate the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of two ultra-high strength steels (PH 13-8 Mo stainless steel and T-200 maraging steel). Hydrogen permeation properties were determined by an electrochemical permeation method. The results of permeation tests indicated that over-aged specimens showed a lower diffusivity/hydrogen flux and higher solubility than those solution-annealed. The great increase in reverted austenite (irreversible hydrogen traps) together with numerous precipitates at the expense of dislocations (reversible) in the over-aged specimen led to such a change in permeability. Ordinary tensile tests indicated that four tested specimens had roughly the same yield strength level. Hence, the hydrogen embrittlement susceptibility of the material could be related to their permeation properties. The uniform distribution of strong hydrogen traps in over-aged specimens instead of weak traps in the solution-annealed impeded the hydrogen transport toward the strained region, thus, the resistance to sulfide stress corrosion cracking was improved in over-aged specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号