首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The variation with time of the open circuit potential of high molybdenum containing stainless steel (Type 254 SMO) was measured in 4% sodium chloride solution in the temperatures range 30-100 °C. The plot of steady state potentials as function of temperature showed an inflection at 50 °C, attributed to the decrease of oxygen solubility in test solution above 50 °C. Potentiodynamic cycling anodic polarization technique was used to determine the critical pitting potential (Epit) and the critical protection potential (Eprot) of the steel in 4-30% NaCl solutions at temperatures between 30 and 100 °C. By plotting the two values versus solution temperature, the corresponding critical pitting (CPT) and the critical protection (CPrT) temperatures were determined. Both parameters decreased with increasing chloride content. Above the CPT, Epit and Eprot decreased linearly with log[Cl]. The addition of bromide ions to the solution shifted both Epit and Eprot towards positive values. In 4% NaCl, Epit increased linearly with pH in the range 1-10. The combined effect of chloride ion concentration and pH on the morphology of the pits was examined by scanning electron microscopy (SEM) following potentiodynamic cycling anodic polarization.  相似文献   

2.
The potentiodynamic anodic polarization curve of α-brass (70% Cu-30% Zn) in 1 M LiBr solution showed an initial active region of the alloy dissolution followed by two well defined anodic current peaks then a narrow passivation region before the pitting potential (Epit) is reached. The initial active anodic region exhibited Tafel slope with 90 mV dec−1 attributed to the formation of CuBr2 complexes. The anodic current peaks were attributed to the formation of CuBr and Cu2+ ions, respectively. The change of pH values of LiBr solution did not affect the anodic polarization curves of α-brass. Increasing the solution temperature from 30 to 90 °C changed the corrosion type from pitting to general one. The addition of 10−2 M benzotriazole (BTAH) to 1 M LiBr solution is completely inhibited the pitting corrosion at 30 °C while it did not inhibit the pitting at 90 °C. The inhibition effect was attributed to the adsorption of BTAH molecules on the alloy surface, which obeys Langmuir isotherm. The presence or absence of pitting corrosion was confirmed by using SEM.  相似文献   

3.
A newly synthesized glycine derivative (termed GlyD), 2-(4-(dimethylamino)benzylamino)acetic acid hydrochloride, was used to inhibit uniform and pitting corrosion processes of Al in 0.50 M KSCN solutions (pH 6.8) at 25 °C. For uniform corrosion inhibition study, Tafel extrapolation, linear polarization resistance and impedance methods were used, complemented with SEM examinations. An independent method of chemical analysis, namely ICP-AES (inductively coupled plasma atomic emission spectrometry) was also used to test validity of corrosion rate measured by Tafel extrapolation method. GlyD inhibited uniform corrosion, even at low concentrations, reaching a value of inhibition efficiency up to 97% at a concentration of 5 × 10−3 M. Results obtained from the different corrosion evaluation techniques were in good agreement. This new synthesized glycine derivative was also used to control pit nucleation and growth on the pitted Al surface based on cyclic polarization, potentiostatic and galvanostatic measurements. The pitting potential (Epit) and the repassivation potential (Erp) increased by the addition of GlyD. Thus GlyD suppressed pit nucleation and propagation. Nucleation of pit was found to take place after an incubation time (ti). The rate of pit nucleation and growth decreased with increase in inhibitor concentration. Morphology of pitting was also studied as a function of the applied anodic potential and solution temperature. Cross-sectional view of pitted surface revealed the formation of large distorted hemispherical and narrow deep pits. GlyD was much better than Gly in controlling uniform and pitting corrosion processes of Al in these solutions.  相似文献   

4.
The electrochemical behaviour of Ni-base alloys (Inconel 625, Inconel 718, G3 and Incoloy 825) is carried out at 80 °C in CO2/H2S corrosion environments using cyclic potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The passivity mechanisms are analysed and discussed. In addition, some significant characterisation parameters such as Ecorr, Ipass, Epit, Epp, ΔE and Ipass in cyclic polarisation curves are analysed and compared to reveal the corrosion resistance of various Ni-base alloys. The equivalent circuit model and ZsimpWin software are utilised to discuss the Nyquist plots of various Ni-base alloys. The diffusion mechanism in EIS measurement is discussed. The result shows that the corrosion resistance of the Ni-base alloys to CO2 corrosion or CO2/H2S corrosion follows the sequence: Inconel 625 > G3 > Inconel 718 > Incoloy 825. H2S works as a cathodic depolariser with accelerating initiation of the corrosion process.  相似文献   

5.
Pulse electrodeposition was used to synthesize nanocrystalline (NC) zinc coatings from citric acid bath. The electrochemical behaviour of the NC zinc coatings was investigated by using potentiostatic and potentiodynamic polarization methods in 0.5 mol/L NaCl (pH = 12) solution and compared with that of cast zinc. Pitting corrosion behaviour was characterized by pitting potential, induction time and stable pit growth rate which were analyzed according to statistical method. The results showed that nanocrystallization increased the sensitivity of Epit refer to potential sweep velocity, changed the type of the pit generation from B1 (parallel) to B2 (series), accelerated the pitting initiation process and inhibited the stable pit growth process of NC zinc.  相似文献   

6.
The pitting corrosion behavior of the underaged (UA), peakaged (PA) and overaged (OA) T6 AA2024/0, 8, 14, 19, 24 vol.% 40 μm SiCp(particles) composites was studied. The processing route used for the materials was the compocasting technique. Corrosion potentials (Ecor), pitting potentials (Epit) as well as protection potentials (Eprot) were extracted from Double Cycle Polarization (DCP) curves contacted in aerated 3.5 wt.% NaCl aqueous solution. In addition 40 days immersion tests carried out and weight loss curves as well as total pit depth measurements were acquired. Pitting initiation and propagation as the main corrosion mechanism was driven by the aging kinetics which is ruled by the reduction in the retained vacancy concentration and at the same time by the increase in dislocation density as SiCp volume fraction increases. Thus, alteration in pitting behavior among composites of different SiCp content took place, although their ageing status was exactly the same.  相似文献   

7.
B. Zaid  D. Saidi  S. Hadji 《Corrosion Science》2008,50(7):1841-1847
Effects of pH solution and chloride (Cl) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy.The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting Epit and corrosion Ecor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits.Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6).  相似文献   

8.
The objective of this work is to study the influence of cavitation on the corrosion behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), in a LiBr heavy brine solution (992 g/L) at 25 °C. The presence of cavitation shifted the OCP value towards the active direction by 708 mVAg/AgCl, increased anodic current densities and passivation current density, ip, and reduced the pitting potential, Ep.Repassivation behaviour of Alloy 31 has been investigated by using potentiostatic tests at different potentials. The current density transient obtained after interrupting cavitation was used to obtain the repassivation index, n, provided by the slope of the log i(t) vs. log t representation. The value of n decreased as the applied potential was increased, reaching values near zero for potentials close to the pitting potential. The damage generated during the potentiostatic tests has been quantified by means of Confocal Laser Scanning Microscopy.  相似文献   

9.
A passive film on an iron electrode was modified with alkyltriethoxysilanes directly. In order to examine the protective ability of the modified passive film against breakdown, the pitting potential, Epit was measured by anodic polarization of the modified electrode in a borate buffer solution (pH 8.49) containing 0.1 M of Cl. The value of Epit for the modified electrode shifted in the positive direction from that of the unmodified electrode, indicating prevention of passive film breakdown. The modified passive film was not broken down in the passive and transpassive regions of polarization curve in some cases. However, many current spikes appeared in the all curves of the modified electrodes. The modified surface of passivated electrode was characterized by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement. There were defects and clusters of associated water within the modified film and hence, Cl could permeate through the defects, leading to appearance of current spikes and occurrence of breakdown.  相似文献   

10.
This study investigates the electrochemical passive properties of AlxCoCrFeNi alloys in H2SO4 by potentiodynamic polarization, EIS, and weight loss tests from 20 to 65 °C. Experimental results indicate that Al harms the corrosion resistance in H2SO4 at temperatures exceeding 27 °C owing to the porous and inferior nature of the protection oxide film of Al in these alloys. Closely examining the Arrhenius plots of corrosion current density reveals that both pre-exponential factor A and activation energy Ea increase with Al content. However, A affects corrosion current density more significantly than Ea at higher temperatures and, conversely, at lower temperatures.  相似文献   

11.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

12.
Sa Li 《Corrosion Science》2010,52(10):3568-3572
To better understand the hot corrosion behaviour of Yb2Zr2O7 ceramic in molten V2O5, hot corrosion experiments were performed in a temperature range of 600-800 °C in air. Different reaction products of ZrV2O7, YbVO4 and m-ZrO2 were identified depending upon the hot corrosion conditions, for example, ZrV2O7 and YbVO4 at 600 °C for 2 h and 8 h; ZrV2O7, m-ZrO2 and YbVO4 at 700 °C for 2 h; m-ZrO2 and YbVO4 either at 800 °C for 2 h or at 700-800 °C for 8 h. The hot corrosion reaction mechanisms were further discussed based on the thermal instability of ZrV2O7 at elevated temperatures.  相似文献   

13.
Copper containing 6000-series aluminium alloys may become susceptible to intergranular corrosion (IGC) as a result of improper thermomechanical processing. Effect of cooling rate after solution heat treatment on the corrosion behaviour of a model AlMgSi(Cu) alloy of nominal composition (wt%) 0.6 Mg, 0.6 Si, 0.2 Fe, 0.2 Mn and 0.1 Cu was investigated. Slow cooling rates were simulated by isothermal treatment for predetermined times in lower temperature baths immediately after solution heat treatment. Treatment for 10-100 s at temperatures below 400 °C introduced susceptibility to IGC. Longer heat treatment at the same temperatures introduced susceptibility to pitting. A corrosion resistant time zone was found between the zones of IGC and pitting at temperatures lower than 350 °C. Quenching in water after solution heat treatment prevented IGC. IGC was related to microgalvanic coupling between the noble Q-phase (Al4Mg8Si7Cu2) grain boundary precipitates and the adjacent depleted zone. Pitting was attributed to coarse particles in the matrix. Possible mechanisms causing the corrosion resistant intermediate zone are discussed. The results indicate possible methods for obtaining increased corrosion resistance of similar alloys by proper thermal processing.  相似文献   

14.
Potentiodynamic polarization behaviour of AISI type 316 SS in NaCl solution was investigated in terms of the potential scan rate effect. The critical pitting potential, Epit, of the stainless steel appeared to be strongly dependent on the potential scan rate. A cumulative anodic electric charge density of the steel was defined as the total charge density from the open circuit potential, Eocp, and calculated using the potentiodynamic polarization curves. It was found that, plotted as a function of the polarization time, the values of the cumulative charge density consisted of two lines with different slopes. It was confirmed that the deflection of the cumulative charge density vs. time plots corresponded to Epit and the values of the cumulative charge density at the deflection were little dependent on the applied scan rate. The cumulative charge density at the deflection was defined as a critical electric charge density for the stable pitting. Also, it was suggested that this electric charge density should be associated with the critical condition for the stable pitting and the critical electric charge for stable pitting should be a representative parameter for the pitting resistance of a material.  相似文献   

15.
The corrosion resistance of 1018 carbon steel, 304 and 316 type stainless steels in the LiBr (55 wt.%) + ethylene glycol + H2O mixture at 25, 50 and 80 °C has been studied using electrochemical techniques which included potentiodynamic polarization curves, electrochemical noise and electrochemical impedance spectroscopy techniques. Results showed that, at all tested temperature, the three steels exhibited an active-passive behavior. Carbon steel showed the highest corrosion rate, since both the passive and corrosion current density values were between two and four orders of magnitude higher than those found for both stainless steels. Similarly, the most active pitting potential values was for 1018 carbon steel. For 1018 carbon steel, the corrosion process was under a mixed diffusion and charge transfer at 25 °C, whereas at 50 and 80 °C a pure diffusion controlled process could be observed. For 316 type stainless steel, at 25 and 50 °C a species adsorption controlled process was observed, whereas at 80 °C a diffusion controlled mechanism was present. Additionally, at 25 °C, the three steels were more susceptible to uniform type of corrosion, whereas at 50 and 80 °C they were very susceptible to localized type of corrosion.  相似文献   

16.
The effects of palladium (Pd) additions on the localized and uniform corrosion of titanium (Ti) were examined by comparing the corrosion behavior of Ti Grade 2 (UNS R50400) to that of Pd-bearing Ti Grade 7 (UNS R52400). Pd additions were found to increase the pitting (Epit) and repassivation (Erp) potentials such that Epit for Ti Grade 2 was significantly lower than Erp for Grade 7 in chloride (Cl) solutions. The effect of Pd on Ti can be explained through the effects Pd has on the hydrogen evolution reaction. Though Pd additions did significantly affect the localized corrosion resistance of Ti, Pd did not appear to influence the passive corrosion rate nor did it mitigate the deleterious effects of fluoride (F). Fluoride was found to dramatically increase the measured corrosion current above a critical concentration of about 0.5 mM.  相似文献   

17.
The corrosion susceptibility of alloy 33 in 0.5 mol/L sodium sulphate solutions containing or not 0.1 mol/L sodium chloride was tested at three different temperatures: 22 °C, 40 °C and 60 °C. Electrochemical studies were performed using corrosion potential measurements (Ecorr) as well as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Corrosion potential measurements showed that alloy 33 was passivated by a previously air formed film which was not destroyed during immersion in both solutions. No corrosion was observed during these tests although the temperature affected the film. Potentiodynamic polarization experiments showed that at high anodic potentials the previous film was broken up, and localized corrosion occurred in both solutions and at the three temperatures tested. Electrochemical impedance spectroscopy tests confirmed the presence of a stable passive film on the alloy surface at open circuit potential. Mott-Schottky analysis indicated that the passive film is an n-type semiconductor due to the presence of point defects of donor species, such as oxygen vacancies and interstitial metallic cations. As the potential increases the Cr(III) present in the barrier layer oxidizes producing Cr(VI) soluble species. The dissolution creates metallic cation vacancies that are acceptor species and the film changes from n-type to p-type semiconductor. The passive film rupture and the following localized attack are related to the drastic oxidative dissolution of the film at high anodic potentials, independent of its p-nature, chloride presence or increased temperature.  相似文献   

18.
The inhibition behaviour of 2-undecyl-1-ethylamino-1-methylbenzyl quaternary imidazoline (2UMQI) and KI on mild steel in 1.0 M H2SO4 solutions was investigated at 25 °C using electrochemical methods. The results indicated that 2UMQI inhibited the corrosion of mild steel and the extent of inhibition increased with 2UMQI concentrations. The inhibition action in the presence of 2UMQI is due to physical adsorption of 2UMQI. A mixed-inhibition mechanism is proposed for the inhibitive effects of 2UMQI. Inhibition efficiency of 2UMQI was enhanced by the addition of iodide ions. In the presence of KI, the potentials of unpolarization, Eu was observed and increased with KI concentration.  相似文献   

19.
The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 °C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al2O3 · 3H2O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.  相似文献   

20.
The aim of this work is to correlate the pitting potential (Epit) evolution with the kinetics of σ phase precipitation in the 2205 duplex stainless steel aged at 850 °C after solution treatment at 1150 °C. The potentiodynamic polarization curves indicate a reduction of the pitting corrosion resistance with the aging time, which is revealed by a decrease in the Epit values from 0.65 to 0.40 VSCE. Thus, Epit values are used to determine the kinetics parameters of the σ phase precipitation. The experimental transformed fraction agrees well with the one calculated by using the modified Kolmogorov–Johnson–Mehl–Avrami equation with an impingement parameter c?=?0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号