首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate‐reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X‐ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO4 · 7H2O concentration increased, corrosion potential (Ecor) values shifted towards more anodic potentials and corrosion current density (Icor) values increased considerably. After inoculation of sulfate‐reducing bacteria (SRB), Ecor shifted towards cathodic values. Icor values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO4 · 7H2O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect.  相似文献   

2.
Studies were carried out to evaluate the stress corrosion cracking (SCC) behavior of a X-70 microalloyed pipeline steel, with different microstructures by using the slow strain rate testing (SSRT) technique at 50 °C, in NaHCO3 solutions. Both anodic and cathodic potentials were applied. Additionally, experiments using the SSRT technique but with pre-charged hydrogen samples and potentiodynamic polarization curves at different sweep rates were also carried out to elucidate hydrogen effects. The results showed that the different microstructures in conjunction with the anodic applied potentials shift the cracking susceptibility of the steel. In diluted NaHCO3 solutions cathodic potentials close to their rest potential values decreased the SCC susceptibility regardless the microstructure, whereas higher cathodic potentials promote SCC in all steel conditions. Certain microstructures are more susceptible to present anodic dissolution corrosion mechanism. Meanwhile concentrated solution did not promotes brittle fracture.  相似文献   

3.
This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel – a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS1−x) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.  相似文献   

4.
The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron-containing intermetallic particles acting as preferential sites for oxygen reduction and hydrogen evolution. These particles also act as pit initiation sites. Heat treatment also causes depletion in the solute content of the matrix, increasing its anodic reactivity. When breakdown occurs, crystallographic pits are formed with {1 0 0} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of aluminium is thus influenced by the presence of low levels of iron, which is one of the main impurities, and its electrochemical behaviour can be controlled by heat treatment.  相似文献   

5.
Corrosion of carbon steel in un-buffered NaCl solutions was studied applying linear potential sweep technique to a rotating disk electrode. Current-potential curves were obtained from linear potential sweep at a rate of 1 mV s−1 in solution with concentrations in the range 0.02-1 M NaCl and rotation rates in the range 170-370 rad s−1, at 22 °C. Potential sweeps, which were conducted in the potential range −700 to −100 mV/SHE, were started from the cathodic limit in order to approach the measurement of corrosion under rust-free conditions. Polarization curves were analyzed with a superimposition model developed ad hoc and implemented in a computer program, which enabled determining the corrosion rate and kinetics parameters of the underlying anodic and cathodic sub-processes. The anodic sub-process, dissolution of iron, was well described in terms of a pure charge transfer controlled reaction, while the cathodic sub-process, oxygen reduction on iron, was well described in terms of mixed mass transfer and charge transfer control. Increase of electrode rotation rate increases the limiting current of oxygen reduction, which results in an enhanced corrosion rate of carbon steel. Increase of NaCl concentration has a dual effect: the limiting current of oxygen reduction decreases as a result of the influence of NaCl concentration on solution viscosity and the anodic dissolution of iron increases due to the influence of NaCl on pitting formation. However, this last mechanism predominates and a net increase in carbon steel corrosion rate is observed in this case.  相似文献   

6.
Influence of sulfate-reducing bacteria on cathodic protection Sulfate-reducing bacteria (SRB) are frequently encountered at coating defects of cathodically protected pipes buried in soil. In laboratory experiments the corrosion behaviour of steel St 37 was studied at potentials in the range of ?0.5 V > UCu/CuSo4 > ?1.27 V and at the open circuit potential in the presence of a mixed culture containing SRB. For simulation of real conditions the experiments were performed on steel samples in sand columns through which a glucose-containing mineral salts solution was continuously pumped. On the basis of the corrosion rates determined an immediate corrosion risk was not evident for a homogeneous mixed electrode even at the open circuit potential. There was only an increase in protective current demand compared to sterile conditions. Hydrogen permeation through the low-alloy steel was slightly higher in the presence of SRB-containing mixed cultures than under sterile and H2S-free conditions. The observed permeation current densities indicated that at potentials of UCu/CuSo4 < ?0.85 V hydrogen-induced corrosion damage was not to be expected under sulfate-reducing conditions.  相似文献   

7.
The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer were investigated by cathodic polarization curves and electrochemical impedance spectroscopy. Results indicated that the cathodic process of PCB-Cu corrosion was dominated by the reduction of oxygen and corrosion products. The cathodic current density increased with increasing relative humidity and Cl ion concentration. The corrosion rate was initially dominated by oxygen reduction, but at the later stage of corrosion, the anodic process began to affect the corrosion rate due to the accumulation of corrosion products.  相似文献   

8.
Electrochemical evolution of the interface formed by carbon steel exposed to artificial seawater with nutrients in the presence and absence of mixed cultures that contain sulfate-reducing bacteria (SRB) is characterized by electrochemical impedance spectroscopy (EIS). The artificial seawater in sterile conditions progressively covered the surface of the steel sample with two different layers after 30 days of exposure. An outer layer is formed by a mixture of chlorides and phosphorus-based iron corrosion products with organic compounds from the culture media, and an inner layer is formed by corrosion products mixture constituted mainly by phosphorus-base products. Alternatively, under biotic conditions there was one heterogeneous layer composed by a mixture of phosphorous and sulfur-based corrosion products and biofilm. Three time constants were observed with EIS for sterile conditions. At low frequencies one constant is associated with the charge transfer resistance related to the iron dissolution reaction and inversely proportional to the active area; the porous resistance magnitudes at medium frequencies characterized the physicochemical properties of the inner layer, and high frequency described the electrical properties of the outer mixture layer. Low carbon steel in the presence of SRB (halophilic hydrogenotrophic) showed the impedance distribution after the formation of a corrosion product thick black layer mixed with organic composites and bio-entities. The SRB-biofilm enhanced the corrosion rate and influenced the appearance of diffusion controlled mechanism process. Electrical passive analogs in terms of constant phase elements characterized the evolution of the cover films formed and the impedance of the layers with time. The mechanisms are characterized based on the impedance response for three time constants in the absence of SRB and one time constant with a finite Warburg element when SRB are present in the electrolyte. The validation of the theoretical approximation with electrical analogs was in good agreement with the experimental results.  相似文献   

9.
The galvanic corrosion of an iron/zinc pair immersed in aqueous 0.1 M Na2SO4 solution has been investigated by using the scanning vibrating electrode technique (SVET). In this way, investigations in the micrometer range of the progress of the electrochemical reactions involved in galvanic process were performed. The anodic oxidation process is observed to be initiated on the zinc sample in a localized manner, whereas the cathodic reaction involving the electroreduction of dissolved oxygen is homogeneously distributed over the iron sample. This later process is the rate determining step in the overall corrosion process, as demonstrated by the changes in the ionic and galvanic currents measured in the system when the area of the iron specimen is varied relative to that of zinc. The occurrence of coupled chemical reactions in the solution phase involving the products of the corrosion reactions could also be deduced from the integration of the ionic currents measured for each half-reaction during a SVET scan. Thus, the corrosion processes involved in the galvanic coupling of iron and zinc have been further understood by using this microelectrochemical technique appropriately, helping to better interpret large scale measurements.  相似文献   

10.
Sulfate-reducing bacteria (SRB) are one of the main reasons for the accelerated corrosion of steel. Cathodic polarization has been reported as an effective and economic method against marine corrosion, including microbiologically induced corrosion. However, the interaction between cathodic polarization and microbial activity has not been well defined. In this study, a fluorine-doped tin oxide electrode is used to study the effect of cathodic current on SRB cells. Fluorescence microscopy results clearly show that the attachment degree of SRB is dependent on the electric quantity and current intensity. The large electric quantity and high cathodic current (400 mA/m2 × 30 h) can effectively inhibit bacterial attachment and subsequent biofilm formation. Furthermore, the effect of cathodic potential on the corrosion behavior of X65 steel in the presence of SRB is systematically investigated. Results show that the impressed charges, the increase of pH, and the formation of calcareous deposits on the electrode surface at the cathodic potential of −1,050 mV/SCE inhibit the attachment of SRB. In turn, the presence of SRB also interferes with the electrochemical reactions that occur during the polarization process, thus increasing the cathodic current. The interaction between SRB-induced corrosion and the process of preventing corrosion by various cathodic potentials is discussed.  相似文献   

11.
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at ∼0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant.  相似文献   

12.
In order to increase the knowledge of the corrosion mechanism, in situ spectroelectrochemical methodologies were employed in the investigation of the electrochemical interface of WC-Co hardmetals. Together with standard cyclic voltammetries (CV), ElectroReflectance Spectroscopy (ERS) and Sum Frequency Generation (SFG) spectroscopy measurements were performed both on a Co-base alloy, simulating the metallic binder of hardmetal composites, and on a model WC-Co system. A cyanide solution, encountered in the gold extraction industry, was employed as electrolyte. Electrochemical cells and experimental apparatuses were designed to allow in situ experiments. CV measurements showed corrosion attack to run at potentials more anodic than −500 mV vs. Ag/AgCl, both for the alloy and the composite. The high reactivity of the alloy in cyanide environment was witnessed by the time-dependence of the surface vibrational (SFG) and electronic (SFG and ERS) properties under cathodic polarisation. Furthermore, SFG measurements highlighted two different adsorbation sites for cyanide ion, probably α- and ε-Co. The WC-Co system showed a pseudo-passivation peak, typical of the corrosion behaviour of this material, due to precipitation of corrosion products. ERS data at 532 nm showed an ennobling of the potential at which the reflectivity increase was recorded.  相似文献   

13.
Electrochemical corrosion behavior of X65 steel in CO2-containing oilfield formation water in the presence of acetic acid (HAc) was investigated by various electrochemical measurements and analyses as well as thermodynamic calculations of ionic concentrations, reaction rate constants and equilibrium electrode potentials. A conceptual model was developed to illustrate corrosion processes of steel in oilfield formation water system. The anodic reactions of the steel contain a direct dissolution of Fe, Fe → Fe2+ + 2e, and the formation of corrosion scale, FeCO3, by Fe + → FeCO3 + H+ + 2e. The cathodic processes contain the reduction of H+, , H2O and HAc, where reduction of HAc has the least negative equilibrium potential and thus dominates the cathodic process. With addition of HAc in the solution, both cathodic and anodic reaction rates increase remarkably. It is attributed to the fact that HAc inhibits or degrades the formation of protective scales due to the decrease of solution pH. Upon electrode rotation, the measured impedance decreases with the increase in HAc concentration. The FeCO3 scale will not form on electrode surface. When HAc concentration is less than 1000 ppm, the adsorbed intermediate product is not significant, resulting in generation of a low-frequency inductive loop in EIS plots. When HAc concentration is more than 3000 ppm, the adsorption of intermediate product is significant, generating overlapped capacitive semicircles in EIS measurements.  相似文献   

14.
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.  相似文献   

15.
Galvanic corrosion of laser weldments of AA6061 aluminium alloy   总被引:2,自引:1,他引:1  
Galvanic corrosion of laser welded AA6061 aluminium alloy, arising from the varying rest potentials of the various weldment regions, was examined. The weld fusion zone is found to be the most cathodic region of the weldment while the base material is the most anodic region. The rate of galvanic corrosion, controlled by the cathodic process at the weld fusion zone, increases with time until a steady state maximum is reached. On galvanic corrosion the corrosion potential of the weld fusion zone shifts in the positive direction and the free corrosion current increases. It is proposed that the cathodic process at the weld fusion zone causes a local increase in pH that in turn causes dissolution of the surface film resulting in the loss of Al to solution and the increase of intermetallic phases. The increase in galvanic corrosion may result from either the build up of the intermetallic phases in the surface layer and/or significant increase in surface area of the weld fusion zone due to the porous nature of the surface layer.  相似文献   

16.
De-alloying of a 70Cu-30Pt alloy has been studied with a view to testing the thermodynamic prediction that a novel kind of underpotential or sub-potential electrodeposition may be possible in such highly curved nanoporous solids. After de-alloying in H2SO4 solution containing CuSO4, successive cathodic processes of PtO monolayer reduction, UPD of Cu, and a Cu plating process were identified, all occurring at potentials above the Cu equilibrium potential. The maximum amount of charge in the third plating process was determined to be about three monolayers, averaged over the whole porous surface. This seems to rule out the possibility that this process is some kind of second UPD layer or other non-bulk form of Cu plating. A probable explanation is that small amounts of bulk Cu are plating into regions of high negative curvature within the de-alloyed material. However X-ray diffraction did not show any evidence of bulk Cu.  相似文献   

17.
Anodising has been investigated as a replacement for chromating as pre-treatment prior to organic coating of aluminium. Both AC and DC anodising gave filiform corrosion properties that were comparable to chromated samples. A correlation between filiform corrosion performance and cathodic properties of converted surface was found. Chromating and hot AC anodising gave significant reduction in cathodic current density. The reduction is due to chromium oxide covering intermetallic particles after chromating, while iron rich intermetallics normally acting as cathodic sites were removed by hot AC anodising.  相似文献   

18.
The differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels were investigated in terms of its electrochemical behavior and surface phenomena. The corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a negative value with the immersion time. However, the potential of the presence of SRB shifted to a positive value after 30 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and the formation of corrosion products. In addition, the color of a medium inoculated with SRB changed from gray to black. The change in color appeared to be caused by the formation of pyrites (FeS) as a corrosion product, while no significant change in color was observed in a medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher compared to those of steels in the absence of SRB. In particular, the corrosion current density of TMCP steels in the presence of SRB was larger than that of other steels. Pitting corrosion was also observed at the surface of all steels in the SRB-inoculated medium. The pitting corrosion likely occurred due to SRB that was associated with the increasing corrosion rates through increasing cathodic reactions, which caused a reduction of sulfate to sulfide as well as the formation of an oxygen concentration cell.  相似文献   

19.
Chemical and electrochemical reactions of iron sulfide and manganese sulfide in acid and neutral solutions The reactions which occur upon corrosion of massive iron sulfide and manganese specimens in perchloric acid and in neutral sodium chloride solution were elucidated by measurements of current-potential curves and by coulometric and analytical investigations on the processes. In acids the sulfides are dissolved by prevailing chemical reaction under evolution of H2S. Upon applying anodic overpotentials electrochemical reactions occur simultaneously, however, with such low velocity that the contribution to corrosion of the sulfides is insignificant. Upon applying cathodic overpotentials some hydrogen discharge is observed on iron sulfide but not on manganese sulfide. In 3% sodium chloride solution both sulfides corrode very slowly upon anodic polarization, forming elementary sulfur according to MeS = Me2+ + S + 2e? (Me = Fe or Mn). At high anodic potentials additional oxidation reactions occur in which three-valent iron and tetravalent manganese ions as well as sulfite and sulfate ions are formed. Iron sulfide and manganese sulfide inclusions can he isolated from steels only by electrochemical dissolution in neutral or weakly basic electrolytes, the potential during electrolysis must not be more positive than the corrosion potential of the sulfides.  相似文献   

20.
Ultra-thin SiO2-like plasma polymer films were deposited on zinc coated steel. Such films led to a strong inhibition of cathodic and anodic electrochemical reactions and a negative shift in the electrode potential. When the SiO2-like films are additionally coated with a few micron thick organic film, the resulting interface electrode potential is further shifted cathodically down to −0.8 VSHE as measured by means of a scanning Kelvin probe. This interface potential is about the same as the free corrosion potential of zinc in a chloride containing electrolyte. Accordingly, the interface proved to be extremely resistant to cathodic de-adhesion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号