首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Cr2AlC coating was deposited on a β-γ TiAl alloy. Isothermal oxidation tests at 700 °C and 800 °C, and thermocyclic oxidation at 800 °C were performed in air. The results indicated that serious oxidation occurred on the bare alloy. Thick non-protective oxide scales consisting of mixed TiO2 + α-Al2O3 layers formed on the alloy surface. The coated specimens exhibited much better oxidation behaviour by forming an Al-rich oxide scale on the coating surface during the initial stages of oxidation. This scale acts as diffusion barrier by effectively blocking the ingress of oxygen, and effectively protects the coated alloys from further oxidation.  相似文献   

2.
S. Matthews  B. James 《Corrosion Science》2008,50(11):3087-3094
Cr3C2-NiCr thermal spray coatings are extensively used to mitigate high temperature erosive wear in fluidised bed combustors and power generation/transport turbines. The aim of this work was to characterise the variation in oxide erosion response as a function of the Cr3C2-NiCr coating microstructure. Erosion was carried out at 700 °C and 800 °C with erodent impact velocities of 225-235 m/s. The erosion behaviour of the oxide scales formed on these coatings, was influenced by the coating microstructure and erosion temperature. Development of the carbide microstructure with extended heat treatment lead to variations in the erosion-corrosion response of the Cr3C2-NiCr coatings.  相似文献   

3.
The oxidation behaviour of single crystal PWA 1483 at 950 °C was investigated by means of XRD, SEM and EDS. The parabolic oxidation behaviour, as defined by mass gain and the respective oxide layer thicknesses, is characterized by a parabolic rate constant of about 4 × 10−6 mg2/(cm4 × s) and the formation of a multi-layered oxide scale. An outer scale contains a Ti-bearing thin film composed of TiO2 and NiTiO3 but mostly Cr in Cr2O3 and (Ni/Co)Cr2O4 besides NiTaO4. This outer scale is connected to a discontinuous layer of Al2O3 and an area of γ′-depletion within the base material.  相似文献   

4.
The cyclic oxidation behaviour of a Co32Ni21Cr8Al0.6Y (wt.%) alloy with and without the addition of 0.2 wt.% dysprosium was investigated at 800 and 1100 °C in static laboratory air. The Dy-containing alloy showed a faster θ- to α-alumina transformation and significantly less weight gain than Dy-free alloy. Under cyclic oxidation at 1100 °C, Dy addition produced a continuous and protective Al2O3 scale. The Dy-free alloy exhibited poor oxidation resistance. Scale spallation led to the development of a complex oxide scale and internal precipitation: (Al,Cr)2O3 on the surface, followed by a Al2O3 layer, then (Al,N) precipitates alone beneath the external scale.  相似文献   

5.
An ∼ 5 µm Cr2AlC coating was synthesized on near-α titanium alloy Ti6242 using an industrially sized magnetron sputtering coater. Isothermal oxidation at 700 °C and 800 °C, and cyclic oxidation at 700 °C of the bare alloys and coated specimens were investigated in air. The results indicated that the Ti6242 alloy faced serious oxidation problems at 700 °C and 800 °C. Repeated formation and spallation of the multilayered oxide scale on the Ti6242 alloy occurred during oxidation testing. The coated specimens exhibited much better oxidation behaviour as compared to the bare alloy. A continuous Al-rich oxide scale formed on the coating surface during the initial oxidation stages. The oxide scale and coating itself acted as diffusion barriers blocking the further ingress of oxygen and protected the substrate alloy from oxidation. The oxidation mechanisms of the bare alloy and the coated specimens were investigated based on the experimental results.  相似文献   

6.
The Mo3Si alloys with different aluminum contents were fabricated by the arc-melting and drop-casting technique, heat treated and then exposed to air at 700, 800, 900 and 1000 °C in order to assess their oxidation behavior. Line scan studies led to the assumption that the oxide scale thermally grown at 1000 °C was composed of SiO2 which was located closer to the alloy matrix and Al2O3 around the outer surface of the oxidized sample, while the Mo oxide volatilized at this oxidation temperature. The results also showed that the unalloyed sample (Mo3Si) underwent a pest reaction in a short time of exposure, while the sample with 16 at.% Al exhibited the best oxidation behavior, which could be attributed to the formation of SiO2 and Al2O3 in the oxide scale.  相似文献   

7.
The present paper focuses on the investigation of the relationship between microstructure of Fe3Al prepared by hot isostatic pressing (HIP) and kinetics of alumina layer formation during oxidation at 900 °C, 1000 °C and 1100 °C. As prepared HIPed Fe3Al sample reveals lamellar microstructure with inhomogeneous Al distribution which originates from the preliminary mechanical activation of Fe-Al mixture. At 900 °C, Fe3Al oxidation is characterized by selective growth of very rough alumina layer containing only transient aluminium oxides. In addition to these transient oxides, α-Al2O3 stable phase is formed at 1000 °C. At the highest temperature (1100 °C), continuous and relatively smooth alumina layer mainly contains fine crystallites of α-Al2O3. The initial lamellar structure and phase inhomogeneity in as-HIPed Fe3Al samples are supposed to be the main factors that determine observed peculiarities after Fe3Al oxidation at 900 °C and 1000 °C.  相似文献   

8.
Composites of Cr3C2-NiCr provide superior oxidation resistance to WC-Co composites, which has seen them applied extensively to components subjected to combined high temperature erosion and oxidation. This work characterises the variation in oxidation mechanism of thermally sprayed Cr3C2-NiCr composites at 700 °C and 850 °C as a function of heat treatment. Carbide dissolution during spraying increased the Ni alloy Cr concentration, minimising the formation of Ni oxides during oxidation. Compressive growth stresses resulted in ballooning of the oxide over the carbide grains. Carbide nucleation with heat treatment reduced the Ni alloy Cr concentration. The oxidation mechanism of the composite coating changed from being Cr based to that observed for NiCr alloys.  相似文献   

9.
This paper addresses the oxidation behaviour of Ti–Al–C films composed mainly of a Ti2AlC phase. The films exhibited rather low oxidation rates at 600 and 700 °C, with an oxygen-rich zone or a thin oxide layer appearing on the film surfaces. Much faster oxidation rates were observed at 800 and 900 °C. The Ti2AlC phase was quickly consumed by oxidation. From the film surface to the inner zone, TiO2-rich layer, Al2O3-rich layer, and TiO2 + Al2O3 mixed layer was observed, respectively. The oxidation mechanism of the Ti–Al–C film is discussed based on the experimental results.  相似文献   

10.
The oxidation behavior of Nb-base in situ composites in static air at 1100, 1200 and 1250 °C has been studied. The reaction followed the parabolic rate law. The oxide scales were mainly composed of TiNb2O7, TiNb10O29, TiO2, Nb2O5 and SiO2. The theoretical oxidation model proposed by Gesmundo et al. has been applied to analyze existing oxidation data of Nb-base in situ composites. The result shows that oxidation rate of the Nb-base in situ composites is basically accordance with the analytical results predicted by the theoretical oxidation model to a good approximation.  相似文献   

11.
The oxidation of Zr50Cu50 alloy at 500-700 °C is characterized by preferential oxidation of zirconium, while the excess of copper is accumulated at the alloy-oxide interface forming the Zr14Cu51 phase. The strong reaction at 800 and 850 °C resulted in the total corrosion of the specimens in 21 and 15 h, respectively. The oxidation at elevated temperatures showed an anomalous decrease of the oxygen consumption rate in the temperature range 930-1000 °C, corresponding to the preferentially oriented crystallites of ZrO2 in the oxide scale at 900 and 1000 °C. The oxide layer consists of ZrO2 and CuO in the whole temperature interval of the oxidation. The reaction kinetics obeys a parabolic rate law. An activation energy of 92.0 ± 0.3 kJ/mol has been estimated.  相似文献   

12.
High purity, dense Cr2AlC compounds were synthesized via a powder metallurgical route, and their oxidation behavior was investigated at 1300 °C in air for up to 336 h. A thin external oxide layer formed, which consisted primarily of not Cr2O3 but Al2O3. Since Al was consumed to produce the Al2O3, Al-depletion and Cr-enrichment occurred underneath the Al2O3 layer. This led to the formation of a Cr7C3 layer containing voids. These grew during oxidation, eventually destroying the Cr7C3 layer formed on the unoxidized Cr2AlC matrix.  相似文献   

13.
Geng  Shujiang  Wang  Fuhui  Zhu  Shenglong 《Oxidation of Metals》2002,57(3-4):231-243
A sputtered nanocrystalline coating of IN 738 alloy was obtained by means of magnetron sputtering. The isothermal oxidation behavior at 800, 900, and 1000°C and the cyclic oxidation behavior at 950°C of the coating were studied in comparison with IN 738 cast alloy. The results indicated that a double external oxide scale was formed on the nanocrystalline coating at 900, 950, and 1000°C without internal oxide and nitride. The scale consisted in an outer mixture of Cr2O3, TiO2, and NiCr2O4 and an inner, continuous Al2O3 layer, which offered good adhesive and protectiveness. However, at 800°C a continuous Al2O3 scale could not be formed during oxidation of nanocrystalline coating and aluminum was still oxidized internally.  相似文献   

14.
Room temperature photoelectrochemistry was used to characterise oxide phases grown during the initial stages of oxidation of the ferritic stainless steel AISI441 at 650°C and 850°C in synthetic air or in water vapour. Grazing incidence X-ray diffraction and Raman spectroscopy were additionally used to discuss PEC results. Haematite Fe2O3 (∼2.0 eV), chromia Cr2O3 (3.0 and 3.5 eV) and their mutual solid solution (∼ 2.5 eV) were detected by their respective bandgap values determined from photocurrent vs. energy curves. The Cr/Fe ratio of the films increased with time/temperature and was higher in air-grown than in H2O-grown oxides. Observation of photocurrent vs. potential curves indicated that chromia was N-type in all specimens, resulting from thermodynamic equilibrium with the metallic substrate and not with the gas phase.  相似文献   

15.
Microstructures of Ti2AlN ceramics synthesized and simultaneously consolidated from starting mixtures of Ti/Al/TiN powders by spark plasma sintering (SPS) were characterized using X-ray diffraction, scanning electron microscopy, focused ion beam (FIB) and transmission electron microscopy (TEM). When sintered for 10 min at 1300 °C, nearly single-phase Ti2AlN ceramics with elongated (∼22 × 6 × 6 μm) grains were obtained. After sintering for 10 min at 1200 °C and chemical etching, Ti2AlN nanowhiskers (150-200 nm dia., 1-5 μm long) were exposed in pores coexisting with TiAl, TiN and Ti2AlN grains. FIB-TEM studies revealed single-crystal Ti2AlN nanowhiskers in a TiAl matrix with orientation relationship [1 1 −2 0]H//[−1 0 1]γ, (0 0 0 1)H//(1 1 1)γ, γ = TiAl, H = Ti2AlN. The nanowhiskers are believed to form by diffusion of TiN into TiAl during SPS and to be exposed during the chemical etch. Microstructural development during high-temperature oxidation of dense Ti2AlN ceramics for 1 h at <1200 °C involves gradual formation on the surface of layered microstructures containing anatase, rutile and α-Al2O3. After 1 h at >1200 °C, more complex layered microstructures containing Al2TiO5, rutile, α-Al2O3 and continuous voids layers form. After heating to 1100 °C for 1 h and cooling to room temperature, planar defects are observed in surface TiO2 grains identified as stacking faults bounded by partial dislocations. After heating for 1 h at 1400 °C and cooling to room temperature, cracks propagate in TiO2 grains. It is believed that planar defects and cracks arise from stress generation in the oxide scale. Thermal stresses formed on cooling may arise from thermal expansion mismatch of phases (TiO2, Al2O3 and Al2TiO5) in the oxide scale, the high anisotropy of thermal expansion in Al2TiO5 and thermal expansion mismatch between the oxide scale and Ti2AlN substrate. Growth stresses formed during the isothermal oxidation treatment may arise from the volume changes associated with oxidation reactions of Ti2AlN. An oxidation mechanism for Ti2AlN ceramics is proposed, which involves initial reaction with atmospheric oxygen to form oxide phases, demixing of the mixed oxide phases, void formation due to the Kirkendall effect and gaseous NOx release. Oxidation of Ti2AlN <1200 °C with 1 h hold times is limited, while above this temperature the oxide scale grows rapidly, and Ti2AlN ceramics undergo heavy oxidation.  相似文献   

16.
TiC particle-reinforced 304 stainless steels were prepared using a new developed in situ technology and exhibited the uniform distribution of TiC particles in the matrix. The oxidation behavior of 304SS-2TiC and 304SS-6TiC (all in weight percentage) was compared with that of 304SS at 850 °C in air for 96 h using thermogravimetry analysis. For 304SS, the rate of weight gain was very slow initially, but accelerated suddenly to a very high level, forming breakaway oxidation. The addition of TiC particles to 304SS resulted in no breakaway oxidation and maintained a low oxidation rate in the whole reaction time investigated. Examination of oxide scale morphology and cross-section analysis by scanning electron microscopy and optical microscopy showed a significant scale spallation and a deep oxide penetration in the case of 304SS, but a rather continuous, dense and adherent oxide layer formed on the surface of TiC particle-reinforced alloys. XRD analysis revealed the presence of Cr2O3 together with spinel-type oxides in the oxide scale. For TiC-containing alloys, fine TiO2 was also found on the surface and the amount of this oxide increased with TiC addition. The TiC addition developed finer matrix structure before oxidation, which accelerates chromium diffusion. As a result, scale adherence was improved and oxidation resistance was increased.  相似文献   

17.
The TiAl3-Al composite coating on orthorhombic Ti2AlNb based alloy was prepared by cold spray. Oxidation in air at 950 °C indicated that the bare alloy exhibited poor oxidation resistance due to the formation of TiO2/AlNbO4 mixture and intended to scale off at the TiO2 rich zone. A nitride layer about 2 µm was formed under the oxide layer. The oxygen invaded deeply into the alloy and caused severe microhardness enhancement in the near surface region. The TiAl3-Al composite coating exhibited parabolic oxidation kinetics and showed no sign of degradation after oxidized up to 1098 h at 950 °C in air under quasi-isothermal condition. No scaling of the coating was observed after oxidized at 950 °C up to the tested 150 cycles. The major oxide in the oxidized coating was Al2O3. The AlTi2N, TiAl and small amount of TiO2 were also observed in the oxidized coating. The EPMA and microhardness tests showed that inward oxygen diffusion was prevented by the interlayer, which was formed between the composite coating and the substrate during heat-treatment. Microstructure analyses demonstrated that the interlayer play a major role in protecting the substrate alloy from high temperature oxidation and interstitial embrittlement.  相似文献   

18.
Oxidation of uncoated WC-based carbides (hard metals) has been investigated between 450 and 800 °C. An anomalous change in the oxidation behaviour has been found in the temperature range between 528 and 630 °C. Instead of the normal increase of the oxidation rates when the temperature increases, a kinetics inversion is produced: an anomalous decrease of the oxidation rates has been observed in this temperature range. Furthermore, this anomalous behaviour produces an important change in the activation energy. At temperatures below the anomaly (below 528 °C), an activation energy of 119 ± 8 kJ/mol has been found, whereas above the anomaly (above 630 °C), an activation energy of 208 ± 8 kJ/mol has been found. This anomalous temperature dependence of the oxidation behaviour can be related to a higher amount of complex oxide CoWO4 formed on the oxide scale, and to the effect that this oxide produces in the oxidation kinetics of the other oxides.  相似文献   

19.
Sa Li 《Corrosion Science》2010,52(10):3568-3572
To better understand the hot corrosion behaviour of Yb2Zr2O7 ceramic in molten V2O5, hot corrosion experiments were performed in a temperature range of 600-800 °C in air. Different reaction products of ZrV2O7, YbVO4 and m-ZrO2 were identified depending upon the hot corrosion conditions, for example, ZrV2O7 and YbVO4 at 600 °C for 2 h and 8 h; ZrV2O7, m-ZrO2 and YbVO4 at 700 °C for 2 h; m-ZrO2 and YbVO4 either at 800 °C for 2 h or at 700-800 °C for 8 h. The hot corrosion reaction mechanisms were further discussed based on the thermal instability of ZrV2O7 at elevated temperatures.  相似文献   

20.
Early stages of the evolution of Al2O3 scales formed on a FeCrAlRE alloy (Kanthal AF) have been investigated by analytical TEM. The samples were oxidized isothermally at 900 °C in dry O2 or O2 + 40% H2O for 1 h or 24 h. All oxide scales exhibited a two-layered structure, with a continuous inward growing α-Al2O3 inner layer and an outward growing outer layer. After 1 h, the outer oxide layer consisted of γ-Al2O3 in both environments. After 24 h exposure in dry O2, the γ-Al2O3 in the outer oxide layer was partly transformed to α-Al2O3 and spinel oxide (Mg1−xFexAl2O4). In contrast, the γ-Al2O3 in the outer layer was not transformed after 24 h in O2 + 40% H2O, showing that water vapour stabilizes γ-Al2O3. All oxide scales contained a Cr-rich band, a product of the initial oxidation. The inner α-Al2O3 layer is suggested to nucleate on Cr2O3 or Cr2−xFexO3 in the initial oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号