首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation novel cationic gemini surfactants namely: bis(p-(N,N,N-octyldimethylammonium bromide)benzylidene)benzene-1,4-diamine (I), bis(p-(N,N,N-decyldimethylammonium bromide)benzylidene)benzene-1,4-diamine (II), and bis(p-(N,N,N-dodecyldimethylammonium bromide)benzylidene)benzene-1,4-diamine (III) were synthesized, characterized, and tested as corrosion inhibitors for carbon steel in 1 M HCl solution. The corrosion inhibition efficiency was measured by using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and weight loss methods. The obtained results showed that, the synthesized inhibitors are excellent inhibitors for carbon steel in 1 M HCl solution. The inhibition efficiency decreased in the temperature range 30-40 °C and then increased in the temperature range 40-60 °C. The prepared inhibitors act as mixed inhibitors. Thermodynamic and activation parameters were discussed. Adsorption of the synthesized inhibitors was found to follow the Langmuir’s adsorption isotherm. Mixed physical and chemical adsorption mechanism is proposed. The morphology of carbon steel samples was investigated by scanning electron microscopy (SEM).  相似文献   

2.
The corrosion inhibition of mild steel in 1.0 M HCl solution by four Schiff bases was investigated using weight loss and electrochemical measurements and quantum chemical calculations. All compounds showed >90% inhibition efficiency at their optimum concentrations. The activation energy (Ea) of corrosion and other thermodynamic parameters were calculated to elaborate the mechanism of corrosion inhibition. The adsorption of the inhibitors on the mild steel surface follows Langmuir isotherm model. Polarization studies indicated that all studied inhibitors are mixed type. The computed quantum chemical properties viz., electron affinity (EA) and molecular band gap (ΔEMBG) show good correlation with experimental inhibition efficiencies.  相似文献   

3.
K.F. Khaled 《Corrosion Science》2010,52(9):2905-2916
Chemical and electrochemical measurements incorporated with quantum chemical calculations and molecular dynamics simulations were used to study the corrosion inhibition characteristics of some thiosemicarbazone derivatives on the inhibition of aluminum corrosion in 1.0 M HNO3. Polarization curves demonstrated that the thiosemicarbazone derivatives were of mixed-type inhibitors. EIS plots indicated that the addition of thiosemicarbazone derivatives increases the charge-transfer resistance of the corrosion process, and hence the inhibition performance. The molecular dynamics simulation results show that the three thiosemicarbazone derivatives can adsorb on the A2O3 (1 1 1) surface through the sulphur and nitrogen atoms as well as π-electrons in the pyridyl structure.  相似文献   

4.
The inhibition effect of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) on the corrosion of mild steel in hydrochloric acid medium has been investigated using weight loss measurements, electrochemical impedance spectroscopy, potentiodynamic polarization and quantum chemical study. Among the compounds studied, DHPM-3 exhibited the best inhibition efficiency η (%) 99% at 10 mg L−1 at 308 K. Polarization measurements indicate that all the examined compounds are of mixed-type inhibitor. The adsorption of studied compounds obeyed the Langmuir’s adsorption isotherm. The electronic properties obtained using quantum chemical approach, were correlated with the experimental inhibition efficiencies.  相似文献   

5.
The inhibition effect of four double Schiff bases on the corrosion of mild steel in 2 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The inhibitors were adsorbed on the steel surface according to the Langmuir adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process were calculated and discussed. Kinetic parameters activation such as Ea, ΔH∗, ΔS∗ were evaluated from the effect of temperature on corrosion and inhibition processes. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies.  相似文献   

6.
The corrosion inhibition characteristics of two hydroxamic acids, i.e., oxalyl-dihydroxamic acid (C2) and pimeloyl-1,5-di-hydroxamic acid (C7), on carbon steel has been studied using density functional theory (DFT). Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), and energy gap (ΔE) have been calculated using B3LYP/6-31 + G∗∗ basis set. The relationship between the inhibition efficiency and quantum chemical parameters has been discussed in order to elucidate the inhibition mechanism of these compounds.  相似文献   

7.
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l−1) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l−1 BTA and 2 g l−1 SP showed optimum enhanced inhibition compared with their individual effects.  相似文献   

8.
The synergistic effect of iodide ions and benzisothiozole-3-piperizine hydrochloride (BITP) on corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been studied by both chemical and electrochemical methods. The corrosion performance of BITP in 1.0 M HCl and 0.5 M H2SO4 media was examined and compared. The adsorption of BITP and its combination with iodide ions on mild steel surface followed Langmuir adsorption isotherm via chemisorption mechanism. The calculated values of synergism parameter (Sθ) were found to be greater than unity. This result clearly showed the existence of synergism between iodide ions and BITP molecules.  相似文献   

9.
The inhibiting effect of 12-aminododecanoic acid (AA) on corrosion of carbon steel (CS) in CO2-saturated hydrochloric acid was investigated. It was found that AA acts as a mixed-type inhibitor, yielding a maximum inhibition efficiency of 98.1 ± 0.1%. The mechanism of its corrosion inhibition is by formation of a self-assembled monolayer (SAM), which presents a tight hydrophobic barrier imposed by the (-CH2)11 chain. In-situ PM-IRRAS measurements revealed that the SAM is amorphous. The SAM formation process was found to be spontaneous and reversible. The corresponding standard Gibbs energy of AA adsorption on CS was calculated to be −28 kJ mol−1.  相似文献   

10.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

11.
The inhibition behaviour of 2-undecyl-1-ethylamino-1-methylbenzyl quaternary imidazoline (2UMQI) and KI on mild steel in 1.0 M H2SO4 solutions was investigated at 25 °C using electrochemical methods. The results indicated that 2UMQI inhibited the corrosion of mild steel and the extent of inhibition increased with 2UMQI concentrations. The inhibition action in the presence of 2UMQI is due to physical adsorption of 2UMQI. A mixed-inhibition mechanism is proposed for the inhibitive effects of 2UMQI. Inhibition efficiency of 2UMQI was enhanced by the addition of iodide ions. In the presence of KI, the potentials of unpolarization, Eu was observed and increased with KI concentration.  相似文献   

12.
A cationic gemini-surfactant, namely 1,4-bis (1-chlorobenzyl-benzimidazolyl)-butane (CBB) was synthesized and its inhibition effect on the corrosion of mild steel in 0.5 M HCl solution was investigated by weight loss and electrochemical techniques. The results showed that CBB acts as an excellent corrosion inhibitor in 0.5 M HCl by suppressing simultaneously the cathodic and anodic processes via chemical adsorption on the surface of steel, which followed the Langmuir adsorption isotherm. The inhibition efficiency increased with the increase of CBB concentration and temperature. The adsorption mechanism of the compound was discussed in terms of thermodynamic and kinetic parameters deduced from the experimental data.  相似文献   

13.
In this paper, the corrosion inhibition of cationic gemini surfactant, in the absence and presence of halide salts (NaCl, NaBr and NaI) on steel in HCl was investigated at 20 ± 1 °C. The effects of pH, immersion time and salt concentration on the corrosion inhibition of steel were studied using weight loss, open circuit potential and electrochemical impedance spectroscopy. Inhibition efficiency increases by increasing surfactant concentration. Synergistic effect between surfactant and salts was studied. The inhibition efficiency increases by increasing salt concentration. This composite inhibitor containing gemini surfactant and halide was efficient and low-cost for steel corrosion inhibition in HCl.  相似文献   

14.
The inhibition effect of four new Schiff bases on the corrosion of 304 stainless steel in 1 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. Polarization curves indicated that all studied Schiff bases act as mixed type (cathodic/anodic) inhibitors. The adsorption of the inhibitors was well described by the Langmuir adsorption isotherm and the adsorption isotherm parameters (Kads, ΔGads) were determined at room temperature. Effect of temperature on the efficiency of the corrosion inhibition process was studied and the values of activation energy, pre-exponential factor (λ), enthalpy of activation and entropy of activation were calculated to elaborate the mechanism of corrosion inhibition. Differences in inhibition efficiency between four tested inhibitors are correlated with their chemical structures.  相似文献   

15.
Corrosion inhibition of copper in O2-saturated 0.50 M H2SO4 solutions by four selected amino acids, namely glycine (Gly), alanine (Ala), valine (Val), or tyrosine (Tyr), was studied using Tafel polarization, linear polarization, impedance, and electrochemical frequency modulation (EFM) at 30 °C. Protection efficiencies of almost 98% and 91% were obtained with 50 mM Tyr and Gly, respectively. On the other hand, Ala and Val reached only about 75%. Corrosion rates determined by the Tafel extrapolation method were in good agreement with those obtained by EFM and an independent chemical (i.e., non-electrochemical) method. The chemical method of confirmation of the corrosion rates involved determination of the dissolved Cu2+, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of chemical analysis. Nyquist plots exhibited a high frequency depressed semicircle followed by a straight line portion (Warburg diffusion tail) in the low-frequency region. The impedance data were interpreted according to two suitable equivalent circuits. The kinetics of dissolved O2 reduction and hydrogen evolution reactions on copper surface were also studied in O2-saturated 0.50 M H2SO4 solutions using polarization measurements combined with the rotating disc electrode (RDE). The Koutecky-Levich plot indicated that the dissolved O2 reduction at the copper electrode was an apparent 4-electron process.  相似文献   

16.
The inhibition effect of Zenthoxylum alatum plant extract on the corrosion of mild steel in 5% and 15% aqueous hydrochloric acid solution has been investigated by weight loss and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extract concentration till 2400 ppm. The effect of temperature on the corrosion behaviour of mild steel in 5% and 15% HCl with addition of plant extract was studied in the temperature range 50-80 °C. Surface analysis (SEM, XPS and FT-IR) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution. Plant extract is able to reduce the corrosion of steel more effectively in 5% HCl than in 15% HCl. The adsorption of this plant extract on the mild steel surface obeys the Langmuir adsorption isotherm.  相似文献   

17.
The inhibition performance of the 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT) on mild steel in normal hydrochloric acid medium (1 M HCl) at 30 °C was tested by weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. This organic compound inhibits the acidic corrosion even at very low concentration, reaching a value of inhibition efficiency up to 98% at a concentration of 3 × 10−4 M. The results obtained from the different corrosion evaluation techniques are in good agreement. Polarisation curves indicate that 4-MAT is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through appropriate equivalent circuit model, a constant phase element (CPE) has been used. The adsorption of 4-MAT on the steel surface, in 1 M HCl solution, obeys to Langmuir’s isotherm with a very high negative value of the free energy of adsorption ΔG°ads (chemisorption). X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of mild steel in 1 M HCl medium in the presence of 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT).  相似文献   

18.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

19.
In this paper, the inhibition ability of benzimidazole and its derivatives against the corrosion of mild steel in 1M HCl solution was studied. The change of impedance parameters observed by variation of inhibitors concentration within the range of 50-250 ppm was an indication of their adsorption. The thermodynamic adsorption parameters proposed that these inhibitors retard both cathodic and anodic processes through physical adsorption and blocking the active corrosion sites. The adsorption of these compounds obeyed the Langmuir’s adsorption isotherm. The inhibition efficiency was increased with inhibitor concentration in the order of 2-mercaptobenzimidazole > 2-methylbenzimidazole > benzimidazole, which is in accordance with the variation of apparent activation energy of corrosion.  相似文献   

20.
The corrosion inhibition of mild steel in 1 M HCl solution by cefotaxime sodium has been studied by Tafel polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The inhibitor showed 95.8% inhibition efficiency at optimum concentration 300 ppm. Results obtained revealed that inhibition occurs through adsorption of the cefotaxime on metal surface without modifying the mechanism of corrosion process. Potentiodynamic polarization studies suggest that it is a mixed type of inhibitor. Electrochemical impedance spectroscopy techniques were also used to investigate the mechanism of corrosion inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号