首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To protect carbon/carbon (C/C) composites against oxidation, a MoSi2 outer coating was prepared on pack-cementation SiC coated C/C composites by a hydrothermal electrophoretic deposition. The phase composition, microstructure and oxidation resistance of the prepared MoSi2/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free MoSi2 outer coatings. The MoSi2/SiC coating can protect C/C composites from oxidation at 1773 K for 346 h with a weight loss of 2.49 mg cm−2 and at 1903 K for 88 h with a weight loss of 5.68 mg cm−2.  相似文献   

2.
To prevent carbon/carbon (C/C) composites from oxidation, a dense SiC nanowire-toughened SiC-MoSi2-CrSi2 multiphase coating was prepared by the two-step technique composed of chemical vapor deposition (CVD) and pack cementation. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). SiC nanowires could decrease the dimension of cracks and improve the oxidation and thermal shock resistance of SiC-MoSi2-CrSi2 multiphase coating. Oxidation test shows that, after introducing SiC nanowires, the weight loss of the coated sample can be reduced from 1.06% to 0.64% after oxidation at 1773 K for 155 h and decreased from 6.92% to 3.42% after thermal cycling between 1773 K and room temperature for 30 times.  相似文献   

3.
To protect carbon/carbon (C/C) composites against oxidation, a SiC nanowire-toughened MoSi2-SiC coating was prepared on them using a two-step technique of chemical vapor deposition and pack cementation. SiC nanowires obtained by chemical vapor deposition were distributed random-orientedly on C/C substrates and MoSi2-SiC was filled in the holes of SiC nanowire layer to form a dense coating. After introduction of SiC nanowires, the size of the cracks in MoSi2-SiC coating decreased from 18 ± 2.3 to 6 ± 1.7 μm, and the weight loss of the coated C/C samples decreased from 4.53% to 1.78% after oxidation in air at 1500 °C for 110 h.  相似文献   

4.
To protect carbon/carbon (C/C) composites against oxidation, a B2O3 modified SiC–MoSi2 coating was prepared by a two-step pack cementation. The microstructure and the oxidation resistant property of the coating were studied. The results show that, the as-received coating is a dense structure, and is composed of α-SiC, β-SiC and MoSi2. The B2O3 modified SiC–MoSi2 coating has excellent oxidation resistant property, and can protect C/C composites from oxidation at 1773 K in air for more than 242 h. The failure of the coating was considered to arise from the existence of the penetration cracks in the coating during the slow cooling from 1873 to 673 K.  相似文献   

5.
To protect carbon/carbon (C/C) composites from oxidation, a dense coating has been produced by a two-step pack cementation technique. XRD and SEM analysis shows that the as-obtained coating was composed of MoSi2, SiC and Si with a thickness of 80-100 μm. The MoSi2-SiC-Si coating has excellent anti-oxidation property, which can protect C/C composites from oxidation at 1773 K in air for 200 h and the corresponding weight loss is only 1.04%. The weight loss of the coated C/C composites is primarily due to the reaction of C/C substrate and oxygen diffusing through the penetration cracks in the coating.  相似文献   

6.
A MoSi2–CrSi2–SiC–Si multi-component coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step pack cementation method. The microstructure, oxidation behavior and mechanical properties of the coating were studied. These results show that the multi-component coating could protect the C/C composites from oxidation in air at 1873 K for 300 h and withstand 30 thermal cycles between 1873 K and room temperature, respectively. The mass loss and mechanical property loss of the coated C/C composites are considered due to the worse fluidity of SiO2 at intermediate temperatures and the thermal mismatch between the coating and C/C composites.  相似文献   

7.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

8.
To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi2–Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.  相似文献   

9.
To protect carbon/carbon (C/C) composites against oxidation, a Si–Mo coating was prepared on C/SiC-coated C/C composites by a simple slurry method. The microstructure of the coating was characterized by X-ray diffraction, scanning electron microscopy and Raman spectra. Results showed that the coating was mainly composed of SiC, MoSi2 and Si. It could protect C/C composites from oxidation at 1873 K in air for 300 h and withstand 13 thermal cycles between room temperature and 1873 K. The excellent oxidation and thermal shock resistance of the coating was attributed to the formation of dense SiO2 glass at high temperature. The volatilization of MoO3 and SiO2 at 1873 K was the main reason of the weight loss of the coated C/C composites.  相似文献   

10.
Haifeng Liu 《Corrosion Science》2007,49(11):4134-4153
Coke formation and metal dusting of electrodeposited pure, 5 μm CeO2-dispersed, and 9-15 nm CeCO2-dispersed Ni3Al coatings were investigated in CO-H2-H2O at 650 °C for a period of 500 h. All Ni3Al coatings showed the inferior long-term resistance to coke formation and metal dusting to the Fe-Ni-Cr alloy due to failure to form a continuous Al2O3 scale. CeO2-dispersed Ni3Al coatings, especially 9-15 nm CeCO2-dispersed coatings, exhibited more severe coke formation and metal dusting than the pure Ni3Al coating. The detrimental effect of CeO2 is believed to be caused by the enhanced formation of NiO/Ni crystals on the coating surfaces or at the grain boundaries, which catalysed the carbon deposition and promoted the carbon attack on Ni3Al coatings.  相似文献   

11.
Three types of Si-Mo-SiO2 coatings: two single-layered ones by different slurry paintings and a final sintering, and three-layered one by triple paintings followed by sintering each time, have been fabricated on the surface of C/C-SiC composites. The coatings were composed of SiC, MoSi2, Si and SiO2. The two single coatings had a microstructure with many pinholes and deep microcracks and had no obvious protection for C/C-SiC composites in air in the range of 1273-1673 K. While the triple Si-Mo-SiO2 coating had a microstructure with much less defects and could provide more than 100 h protection at 1473-1673 K in air and kept intact in the course of 50 cycles of thermal shock test between 1673 K and 373 K. The excellent anti-oxidation ability and thermal shock resistance of the triple Si-Mo-SiO2 coating can be attributed to its relatively integral microstructure and the self-sealing of microcracks during oxidation.  相似文献   

12.
In order to prevent carbon/carbon (C/C) composites from oxidation at 1773 K, a Si-W-Mo coating was prepared on the surface of SiC coated C/C composites by a simple pack cementation technique. The microstructures and phase composition of the as-received multi-coating were examined by SEM, XRD and EDS. It was seen that the compact multi-coating was composed of α-SiC, Si and (WxMo1 − x)Si2. Oxidation behaviour of the SiC/Si-W-Mo coated C/C composites was also studied. After 315 h oxidation in air at 1773 K and thermal cycling between 1773 K and room temperature for 17times, no weight loss of the as-coated C/C composites was measured. The excellent anti-oxidation ability of the multi-coating is attributed to its dense structure and the formation of the stable glassy SiO2 film on the coating surface during oxidation.  相似文献   

13.
Carbon/carbon (C/C) composites were modified by SiC-MoSi2-CrSi2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.  相似文献   

14.
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC–MoSi2/ZrO2–MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC–MoSi2/ZrO2–MoSi2 coating is dense and crack-free with a thickness of 250–300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.  相似文献   

15.
The MoSi2-based coatings were synthesized on the surface of the low carbon steel substrate using electrothermal explosion ultra-high speed spraying method. Microstructure, phase structure, elements distribution and microhardness of the coatings were characterized by SEM, XRD, EDS and Vickers hardness tester, respectively. It is found that MoSi2 coating and MoSi2 + MoB2 multiphase coating were in-situ formed. The coatings have compact microstructure, submicron-grain and high hardness. The bonding of coating-substrate is metallurgical one. The hardness and microstructure of the MoSi2 coating were improved by boron alloying. The average and highest hardness of the MoSi2 coating are 1340 HV0.2 and 1390 HV0.2, respectively, and that of MoSi2 + MoB2 multiphase coating are 1650 HV0.2 and 1785 HV0.2, respectively.  相似文献   

16.
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4–SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.  相似文献   

17.
MoSi2 - 0, 15.3, 22, and 29.3 at.% Al coatings were prepared on the nickel-based super-alloy substrates by electro-thermal explosion ultrahigh speed spraying technology. The analysis showed that the coatings had fine microstructure with grain sizes ranging from 0.5 to 2 μm. The bonding between coating and substrate was typically metallurgical cohesion. The oxidation resistance of the coating was further studied at 1100 °C in air. Al alloyed in MoSi2 coatings increased the oxidation resistance of the coatings, and the oxidation resistance of MoSi2-15.3 at.% Al coating was higher than the other two MoSi2–Al coatings. This suggested the oxidation resistance might have close relations to the obtained grain size.  相似文献   

18.
This paper presents the cyclic oxidation behaviour of electrodeposited pure, nano CeO2 (9-15 nm)- and micron CeO2 (5 μm)-modified Ni3Al coatings on Fe-Ni-Cr substrate at 1050 °C for periods up to 500 h. The pure Ni3Al coating had a marginal resistance to cyclic oxidation at 1050 °C, while the CeO2-dispersed Ni3Al coatings showed much better cyclic oxidation resistance. This difference was attributed to many beneficial effects of CeO2 including changing the growth mechanism of α-Al2O3 scale, reducing the growth rate of the scale, improving mechanical properties of the scale, and reducing void formation at the scale/coating interface and at the scale-grain boundaries.  相似文献   

19.
S. Matthews  B. James 《Corrosion Science》2008,50(11):3087-3094
Cr3C2-NiCr thermal spray coatings are extensively used to mitigate high temperature erosive wear in fluidised bed combustors and power generation/transport turbines. The aim of this work was to characterise the variation in oxide erosion response as a function of the Cr3C2-NiCr coating microstructure. Erosion was carried out at 700 °C and 800 °C with erodent impact velocities of 225-235 m/s. The erosion behaviour of the oxide scales formed on these coatings, was influenced by the coating microstructure and erosion temperature. Development of the carbide microstructure with extended heat treatment lead to variations in the erosion-corrosion response of the Cr3C2-NiCr coatings.  相似文献   

20.
Carbon/carbon (C/C) composites were modified with an aluminum phosphates solution by a novel microwave hydrothermal (MH) process in order to improve their low temperature oxidation resistance. Results show that a H3PO4 or HPO3 continuous molten layer with some regular, white cubic Al(PO3)3 crystallites are obtained on the surface of the modified composites. The anti-oxidation property of the composites after modification improves with the increase of the MH temperature from 393 to 473 K. The oxidation rate is almost constant after oxidation at 873 K for 6 h. The formation of annular structure of Al(PO3)3 is helpful to improve the oxidation resistance of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号