首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The inhibiting effect of four innoxious thiadiazole derivatives (2-mercapto-5-amino-1,3,4-thiadiazole (MAT), 2-mercapto-5-acetylamino-1,3,4-thiadiazole (MAcAT), 2-mercapto-5-methyl-1,3,4-thiadiazole (MMeT) and 2-mercapto-5-phenylamino-1,3,4-thiadiazole (MPhAT)) on bronze corrosion in an aerated solution of 0.2 g L−1 Na2SO4 + 0.2 g L−1 NaHCO3 at pH 5 was studied by potentiodynamic voltammetry and electrochemical impedance spectroscopy.The corrosion parameters determined from the polarisation curves indicate that the addition of the investigated thiadiazole derivatives decreases both cathodic and anodic current densities, due to an inhibition of the corrosion process, through the adsorption of thiadiazoles on the bronze surface. The inhibiting effect of the investigated organic compounds appears to be more pronounced on the anodic process than on the cathodic one and, except for the case MPhAT, it is enhanced by the increases of the inhibitors’ concentration.The adsorption of the thiadiazole derivatives on bronze was confirmed by the presence of the nitrogen atoms in the EDX spectra of the bronze exposed to inhibitor-containing solutions.The magnitude of polarisation resistance values and, consequently, the inhibition efficiencies are influenced by the molecular structure of thiadiazole derivatives. The strongest inhibition was noticed in the presence of compounds with phenyl amino- or amino-functionalities in their molecules. The maximum protection efficiencies were obtained by addition of: 5 mM MAT (95.9%), 1 mM MAcAT (95.7%), 5 mM MMeT (92.6%) and 0.1 mM MPhAT (97%). EIS measurements also revealed that the inhibitor effectiveness of the optimal concentrations of thiadiazole is time-dependent.  相似文献   

2.
The efficiency, as steel corrosion inhibitors in 0.5 M H2SO4, of two thiadiazole derivatives, 2-amino-5-(3-pyridyl)-1,3,4-thiadiazole (3-APTD) and 2-amino-5-(4-pyridyl)-1,3,4-thiadiazole (4-APTD), was investigated by polarization and electrochemical impedance spectroscopy. The protection efficiency increases with increasing inhibitors concentration, but the temperature has hardly effect on the inhibition efficiency of APTD. The adsorption of APTD on iron surface obeys the Langmuir isotherm. The experimental results show that the inhibition efficiency of 4-APTD is higher than that of 3-APTD, and the molecular dynamics (MD) simulations show that the adsorption of 4-APTD on iron surface has the higher binding energy than that of 3-APTD.  相似文献   

3.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

4.
A heterocyclic Schiff base furoin thiosemicarbazone was tested for its corrosion inhibition towards mild steel in 1 M HCl solution using weight loss, Tafel polarization and electrochemical impedance spectroscopy techniques. Furoin thiosemicarbazone revealed good corrosion inhibition efficiency even at low concentrations towards mild steel in HCl medium. Comparison of corrosion inhibition efficiency of Schiff base and its parent amine and effect of temperature on inhibition efficiency were also investigated. The adsorption of furoin thiosemicarbazone on mild steel surface obeys Langmuir isotherm.  相似文献   

5.
The inhibition performance of two imidazoline derivatives, 3-ethylamino-2-undecyl imidazoline (EUI) and chloride-3-ethylamino-3-(2,3-two hydroxyl) propyl-2-undecyl imidazoline sodium phosphate(CEPIP), for Q235 steel in CO2 saturated solution at 298 K have been tested by weight loss experiment and electrochemical techniques. The adsorption behavior of the two inhibitors on Fe surface has been studied using molecular dynamics (MD) method and density functional theory. The results indicated that the two imidazoline derivatives could both adsorb on the Fe surface firmly through the imidazoline ring and heteroatoms, the two inhibitors both have excellent corrosion inhibition performance.  相似文献   

6.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1.0 M HCl by 2-amino-5-phenyl-1,3,4-thiadiazole (APT) has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The results show that the inhibition efficiency increases with the increase of APT concentration in both acids, and the higher inhibition efficiency is obtained in 0.5 M H2SO4. The adsorption of APT molecules on the steel surface obeys Langmuir adsorption isotherm in both acids, and occurs spontaneously. The molecular dynamics method has also been used to simulate the adsorption of ATP molecule and solvent ions on the iron surface. The results show that with the adsorption of sulfate ions the Fe + anion + APT system has the higher negative interaction energy comparing to the case of the adsorption of chloride ions.  相似文献   

7.
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l−1) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l−1 BTA and 2 g l−1 SP showed optimum enhanced inhibition compared with their individual effects.  相似文献   

8.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

9.
The cycloaddition reactions of the cyclic nitrones 1-pyrroline 1-oxide and 3,4,5,6-tetrahydropyridine 1-oxide with alkenes, 11-phenoxy-1-undecene and 11-p-methoxyphenoxy-1-undecene, afforded cycloaddition products (bicyclic isoxazolidines) in excellent yields. One of the cycloadducts on reaction with propargyl chloride and ring opening with zinc in acetic acid afforded quaternary ammonium salt and aminoalcohol, respectively. All the new inhibitor molecules in the presence of 400 ppm at 60 °C achieved inhibition efficiencies, determined by gravimetric method, in the range 99-99.6% and 85-99% for mild steel in 1 M HCl and 0.5 M H2SO4, respectively. Comparable results were obtained by the electrochemical methods using Tafel plots and electrochemical impedance spectroscopy for the synthesized compounds. The isoxazolidine derivatives were also found to be good inhibitors of mold steel corrosion in synthetic brine. Negative values of in the acidic media ensured the spontaneity of the adsorption process. While the corrosion inhibition by these molecules was predominantly under cathodic control in 1 M HCl, the inhibition in 0.5 M H2SO4 was found to be under anodic control. The isoxazolidines and their derivatives were found to be among a rare class of molecules, which provide suitable inhibition mechanism for the corrosion inhibition in HCl as well as in H2SO4 media.  相似文献   

10.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

11.
K.F. Khaled 《Corrosion Science》2010,52(10):3225-3234
Inhibition performance of three amino acids, namely l-methionine (MIT), l-methionine sulfoxide (MITO) and l-methionine sulfone (MITO2), as corrosion-safe inhibitors for copper surface in 1.0 M nitric acid was investigated by weight loss, dc polarization and ac impedance techniques. A significant decrease in the corrosion rate of copper was observed in the presence of the investigated compounds. The reactivates of the compounds under investigation were analyzed through Fukui functions, to explain their inhibition performance. Simulation techniques incorporating molecular mechanics and molecular dynamics were used to simulate the adsorption of l-methionine derivatives, on copper (1 1 1) surface in nitric acid.  相似文献   

12.
The corrosion inhibition of mild steel in a 2.5 M H2SO4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H2SO4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.  相似文献   

13.
The inhibiting effect of 12-aminododecanoic acid (AA) on corrosion of carbon steel (CS) in CO2-saturated hydrochloric acid was investigated. It was found that AA acts as a mixed-type inhibitor, yielding a maximum inhibition efficiency of 98.1 ± 0.1%. The mechanism of its corrosion inhibition is by formation of a self-assembled monolayer (SAM), which presents a tight hydrophobic barrier imposed by the (-CH2)11 chain. In-situ PM-IRRAS measurements revealed that the SAM is amorphous. The SAM formation process was found to be spontaneous and reversible. The corresponding standard Gibbs energy of AA adsorption on CS was calculated to be −28 kJ mol−1.  相似文献   

14.
The stability and compressibility of Langmuir films of dococyltriethylammonium bromide (C22TAB) and 1-octadecanol (C18OH) and their mixtures on water surfaces were first investigated. Langmuir-Blodgett films were transferred onto iron substrate. Their effect on corrosion of iron in carbon dioxide containing brine were investigated by electrochemical methods. The C18OH formed a thin homogenous film with molecular area 19.4 Å2 at 36 mN m−1 at water surface. The films of C22TAB and C22TAB/C18OH mixtures were less dense, with 31 Å2 molecular area at 36 mN m−1 at water surface. The corrosion rate of iron substrate was reduced by 95% by deposition film of C18OH, while the corrosion rate of iron was reduced by 60% for films of C22TAB and C22TAB/C18OH mixtures.  相似文献   

15.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

16.
The corrosion inhibition characteristics of two hydroxamic acids, i.e., oxalyl-dihydroxamic acid (C2) and pimeloyl-1,5-di-hydroxamic acid (C7), on carbon steel has been studied using density functional theory (DFT). Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), and energy gap (ΔE) have been calculated using B3LYP/6-31 + G∗∗ basis set. The relationship between the inhibition efficiency and quantum chemical parameters has been discussed in order to elucidate the inhibition mechanism of these compounds.  相似文献   

17.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

18.
The inhibition performance of the 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT) on mild steel in normal hydrochloric acid medium (1 M HCl) at 30 °C was tested by weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. This organic compound inhibits the acidic corrosion even at very low concentration, reaching a value of inhibition efficiency up to 98% at a concentration of 3 × 10−4 M. The results obtained from the different corrosion evaluation techniques are in good agreement. Polarisation curves indicate that 4-MAT is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through appropriate equivalent circuit model, a constant phase element (CPE) has been used. The adsorption of 4-MAT on the steel surface, in 1 M HCl solution, obeys to Langmuir’s isotherm with a very high negative value of the free energy of adsorption ΔG°ads (chemisorption). X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of mild steel in 1 M HCl medium in the presence of 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT).  相似文献   

19.
The corrosion resistance of three indigenous nitric acid grade (NAG) type 304L stainless steel (SS), designated as 304L1, 304L2 and 304L3 and two commercial NAG SS designated as Uranus-16 similar to 304L composition and Uranus-65 similar to type 310L SS were carried out in nitric acid media. Electrochemical measurements and surface film analysis were performed to evaluate the corrosion resistance and passive film property in 6 N and 11.5 N HNO3 media. The results in 6 N HNO3 show that the indigenous NAG 304L SS and Uranus-65 alloy exhibited similar and higher corrosion resistance with lower passive current density compared to Uranus-16 alloy. In higher concentration of 11.5 N HNO3, transpassive potential of all the NAG SS shows a similar range, except for Uranus-16 alloy. Optical micrographs of all the NAG SS revealed changes in microstructure after polarization in 6 N and 11.5 N HNO3 with corrosion attacks at the grain boundaries. Frequency response of the AC impedance of all the NAG SS showed a single semicircle arc. Higher polarization resistance (RP) and lower capacitance value (CPE-T) revealing higher film stability for indigenous NAG type 304L SS and Uranus-65 alloy. Uranus-16 alloy exhibited the lowest RP value in both the nitric acid concentration. Auger electron spectroscopy (AES) study in 6 N and 11.5 N HNO3 revealed that the passive films were mainly composed of Cr2O3 and Fe2O3 for all the alloys. The corrosion resistance of different NAG SS to HNO3 corrosion and its relation to compositional variations of the NAG alloys are discussed in this paper.  相似文献   

20.
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号