首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around −0.50 and −0.25 V/(Ag∣AgCl∣KClsat) for hard chromium and Cr3C2-NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 kΩ cm2 were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 kΩ cm2 as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied.  相似文献   

2.
In this study, investigations on the protectiveness of poly(ether imide) coatings against corrosion of magnesium AZ31 alloy sheets are performed. The coatings were prepared in different pre-treated substrates by the dip coating method using N′N′-dimethyl acetamide (DMAc) and N′-methyl pyrrolidone solutions. The optimal performance was obtained for hydrofluoric acid treated substrates coated using DMAc solution (coating thickness 13 μm) which showed impedances in the order of 107 Ω cm2 even after more than 3300 h of exposure to a 3.5 wt.% NaCl solution. This high performance is associated to an acid–base interaction at the interface as observed by X-ray photoelectron spectroscopy.  相似文献   

3.
The corrosion protection performance of electroless deposited nickel-phosphorus (Ni-P) alloy coatings containing tungsten (Ni-P-W) or nano-scattered alumina (Ni-P-Al2O3) composite coatings on low carbon steel was studied. The effect of heat treatment on the coating performance was also studied. The optimum conditions under which such coatings can provide good corrosion protection to the substrate were determined after two weeks of immersion in 3.5% NaCl solution. Electrochemical impedance spectroscopy (EIS) and polarization measurements have been used to evaluate the coating performance before and after heat treatment. The Ni-P-W coatings showed the highest surface resistance compared with Ni-P-Al2O3 and Ni-P. The surface resistance of Ni-P-W coatings was 12.0 × 104 Ω cm2 which is about the double of the resistance showed by Ni-P-Al2O3 (7.00 × 104 Ω cm2) and twenty times greater than the surface resistance of Ni-P (0.78 × 104 Ω cm2). XRD analysis of non-heat-treated samples revealed formation of a protective tungsten phosphide phase. Heat treatment has an adverse effect on the corrosion protection performance of tungsten and alumina composite coatings. The surface resistance decreased sharply after heat treatment.  相似文献   

4.
The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h?1 cm?2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.  相似文献   

5.
Titanium dioxide (TiO2) films have been deposited onto stainless steel substrates using atomic layer deposition (ALD) technique. Composition analysis shows that the films shield the substrates entirely. The TiO2 films are amorphous in structure as characterized by X-ray diffraction. The electrochemical measurements show that the equilibrium corrosion potential positively shifts from − 0.96 eV for bare stainless steel to − 0.63 eV for TiO2 coated stainless steel, and the corrosion current density decreases from 7.0 × 10− 7 A/cm2 to 6.3 × 10− 8 A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the TiO2 films provide good protection for stainless steel against corrosion in sodium chloride solution. The above results indicate that TiO2 films deposited by ALD are effective in protecting stainless steel from corrosion.  相似文献   

6.
The present work deals with the process of electroless deposition and electrochemical corrosion behavior of nickel-polychlorotrifluoroethylene-phosphorous (Ni-PCTFE-P) nanocomposite coatings. The process of autocatalytic-catalytic reduction of Ni in nickel sulfate and sodium hypophosphate solution with PCTFE suspended particles has been employed for the formation of the electroless Ni-PCTFE-P composite coatings. Surface morphology and composition of the composite coatings are characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) measurements and X-ray diffraction (XRD) analysis. Corrosion behavior of coatings is evaluated using open-circuit potential (EOCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization techniques in 3.5 wt.% NaCl solution. The study reveals significant shift in corrosion potential towards the noble direction, decrease in corrosion current density, increase in charge transfer resistance and decrease in double‐layer capacitance values with the incorporation of PCTFE particles in the Ni-P matrix. The significant improvement in corrosion resistance observed for Ni-PCTFE-P nanocomposite coatings (25.3 kΩ cm2) compared to Ni-P (16 kΩ cm2) could have resulted from the microstructural differences of pure Ni-P with Ni-PCTFE-P nanocomposite coatings.  相似文献   

7.
The hot corrosion behavior of CoNiCrAlY coatings deposited on IN738LC super alloy using low pressure plasma spray (LPPS) was investigated using samples immersed in a solution of Na2SO4-10 wt.% NaCl and dried as to be covered with a 2.5 mg/cm2 costing. Specimens were heat-treated in furnace at 850 °C and after 24 h in the furnace were accurately weighed. Microstructural characterizations were carried out by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) indicated interactions within microstructure of the coating with clearly diminished thickness of MCrAlY coating. Phase transformation and β-NiAl phase depletion in the MCrAlY coatings were shown to be directly related to the thermal cycles experienced by the samples and revealed outward diffusion of Al in the coating and the inward migration of Ni toward the coating causing β → γ′ phase transformation as the main cause of instability of the β-NiAl.  相似文献   

8.
Hybrid sol-gel coatings derived from a base catalyzed hydrolysis of tetraethylorthosilicate and methyltriethoxysilane were deposited on aluminum substrates by a dip coating technique. Some of the coatings were deposited on substrates whose surfaces were pre-treated using atmospheric-air plasma prior to coating in order to study the effect of surface activation by plasma pre-treatment. The coated substrates were heat treated in different ambiences like air, flowing N2 and vacuum to see the effect of heat treatment ambience on the properties of the coatings. Characterization of the coatings after heat treatment was carried out with respect to coating thickness, pencil scratch hardness, adhesion, water contact angle and their microstructure. Corrosion testing for all the coatings was carried out by electrochemical polarization measurements as well as electrochemical impedance spectroscopy in 3.5% NaCl solution for 1 h exposure time to investigate on their corrosion resistance. Coating thicknesses ranging from 1 μm-5 μm were obtained by varying the withdrawal speeds. Heat treatment in a controlled atmosphere with low oxygen content was seen to improve the hydrophobicity of coated surface, as measured by water contact angles (20o — air; 71o — N2; 95o — vacuum), thereby improving the corrosion resistance. Surface pre-treatment using open-air plasma was seen to improve the adhesion of the sol-gel coatings thus making it possible to obtain adherent and thick coatings in a single dip coating process. Both the methods of processing the coatings reduced the corrosion rate of aluminum from 1.95 mpy to 0.004 mpy in case of coatings densified in nitrogen and to 0.00068 mpy for coatings deposited on a plasma treated substrate and densified in air.  相似文献   

9.
Protective coatings for the metal interconnects of solid-oxide fuel cells have been produced by magnetron sputtering of metal targets sintered from mixtures of Co and Mn powders with a Y2O3 additive. Oxidizing heat-treatment of the metal coating in air at 800 °C and the reactive mode of coating deposition in which a cubic spinel structure formed immediately during coating deposition were used. The plasma providing for ion assistance was produced by ionizing the gas mixture in the working chamber with a low-energy broad electron beam. It has been demonstrated that the reactive mode promotes stabilization of the coating composition in the course of high-temperature testing. The effect of an yttrium additive (0.014-1.4 at.%) on the oxidation rate and area specific resistance (ASR) of the coated steel has been investigated. Thermogravimetric tests have shown that a 1.4 at.% Y additive to a spinel coating reduces the oxidation rate for AISI430 and Crofer 22 APU steels by a factor of 27.8 and 8.6, respectively. For the coated AISI430 steel, the ASR increased to 100 mΩ·cm2 within 1-2 thousands of hours, depending on the Y content in the coating. For the Crofer 22 APU steel with a Y-doped coating, the ASR decreased to a 6 mΩ·cm2 within several hundreds of hours and then increased to 15 mΩ·cm2 within 5000 h. For the MnCo2O4-coated Crofer 22 APU specimens, the ASR gradually decreased from 11 to 6 mΩ·cm2 within 5000 h.  相似文献   

10.
Polypyrrole (PPy) films (∼ 1.7 μm thick) have been electrodeposited on mild steel (MS) substrates from 0.1 M pyrrole containing aqueous oxalic acid solution, by using cyclic voltammetry technique. Then, the polymer coatings were modified with deposition of zinc particles (∼ 1 mg/cm2), at a constant potential value of − 1.20 V in 0.2 M ZnSO4 solution. The corrosion performance of zinc modified PPy coating has been investigated in 3.5% NaCl solution, by using electrochemical impedance spectroscopy and anodic polarisation curves. Also, the corrosion behaviours of zinc modified PPy coated platinum and single PPy coated MS samples have been investigated, for comparison. It was shown that zinc modified coating exhibited very low permeability and provided important cathodic protection to MS for considerably long immersion period. The voluminous zinc corrosion products are formed during exposure time in aggressive solution, giving rise to a blocking effect on the porous structure and led to effective barrier behaviour of zinc modified PPy coating, even after 96 h of exposure time to corrosive solution.  相似文献   

11.
The effects of a deposition current density (c.d.) on the corrosion behaviour of Zn–Mn alloy coatings, deposited from alkaline pyrophosphate solution, were investigated by atomic absorption spectrophotometry (AAS), X-ray diffraction (XRD), atomic force microscopy (AFM), optical microscopy, electrochemical impedance spectroscopy (EIS) and measurement of corrosion potential (Ecorr). XRD analysis disclosed that zinc hydroxide chloride was the main corrosion product on Zn–Mn coatings immersed in 0.5 mol dm−3 NaCl solution. EIS investigations revealed that less porous protective layer was produced on the alloy coating deposited at c.d. of 30 mA cm−2 as compared to that deposited at 80 mA cm−2.  相似文献   

12.
To study the effect of ZrO2 particles on corrosion behaviour of Cr coating, steel samples were plated in Cr(VI) baths without and with ZrO2. The corrosion behaviour of plated samples was studied at different exposure times in a solution containing 0.01 mol l−1 H2SO4 + 0.5 mol l−1 Na2SO4 using cyclic voltammetry and impedance spectroscopy. The equivalent circuit model Re(QcRpore)(Qs[ORs]) was proposed to fit the corrosion process and the parameters Y0(Qc),Y0(Qs) and Rpore reflecting corrosion behaviour of samples were evaluated. From the results, it was found that samples plated in bath containing ZrO2 exhibited improved protective properties as a result of the structural characteristics of the coatings obtained; namely, the size and shape of pores.  相似文献   

13.
To enhance the mechanical properties of TiN coating on magnesium alloy, metal vapor vacuum arc (MEVVA) ion implantation was performed to modify magnesium alloy substrate before TiN film deposition. Implantation energy was fixed at 45 keV and dose was at 9 × 1017 cm− 2. TiN coatings were deposited by magnetically filtered vacuum-arc plasma source on unimplanted and implanted substrate. The microstructure composition distribution and phase structure were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical states of some typical elements of the TiN coating were analyzed by means of X-ray photoelectron spectroscopy (XPS). The properties of corrosion resistance of TiN coatings were studied by CS300P electrochemical-corrosion workstation, and the mechanism of the corrosion resistance was also discussed.  相似文献   

14.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

15.
Ni-TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in a Ni plating bath containing TiO2 nanoparticles to be codeposited. The influences of the TiO2 nanoparticle concentration in the plating bath, the current density and the stirring rate on the composition of nanocomposite coatings were investigated. The composition of coatings was studied by using energy dispersive X-ray system (EDX). The wear behavior of the pure Ni and Ni-TiO2 nanocomposite coatings were evaluated by a pin-on-disc tribometer. The corrosion performance of coatings in 0.5 M NaCl, 1 M NaOH and 1 M HNO3 as corrosive solutions was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods (EIS). The microhardness and wear resistance of the nanocomposite coatings increase with increasing of TiO2 nanoparticle content in the coating. With increasing of TiO2 nanoparticle content in the coating, the polarization resistance increases, the corrosion current decreases and the corrosion potential shifts to more positive values.  相似文献   

16.
The present paper studies the effect of ion implantation of 2 × 1016 ions/cm2 of Ce+ and 2 × 1016 ions/cm2 of La+ at 150 keV on the corrosion behaviour of hot-dip galvanised steel. After implantation, galvanised steel was characterised by means of XPS previous to and following immersion in the medium. The results revealed incorporation of cerium and lanthanum on the surface as Ce2O3 and La2O3, respectively. Electrochemical impedance spectroscopy was carried out in order to evaluate its corrosion behaviour in 0.6 M NaCl during 1 month of immersion. The corrosion resistance was improved by an increase in the charge transfer resistance of the implanted specimens in the medium. This effect could be associated with changes in the morphology/microstructure of the corrosion products layer rather than in its composition variations.  相似文献   

17.
The effects of nitrogen ion implantation on corrosion behaviour of 304L stainless steel in 1 N HNO3 medium were investigated using surface analytical and electrochemical techniques. Nitrogen ion was implanted at 70 keV in the dose range of 1 × 1015, 1 × 1016, 1 × 1017 and 2.5 × 1017 N+/cm2, respectively. Grazing incidence X-ray diffraction results for unimplanted and up to dose of 1 × 1016 N+/cm2 showed co-existence of γ-Fe and α′-Fe and, at higher doses (1 × 1017 and 2.5 × 1017) preferential formation of chromium nitride was observed. X-ray photoelectron spectroscopy investigation confirmed the formation of chromium nitride at higher doses. Electrochemical corrosion investigation revealed nobler open circuit potential, decrease in corrosion current densities, passive current densities and increase in polarization resistance with increase in dose rate. Surface morphology analysis after polarization study using atomic force microscope showed grain boundary dissolution for unimplanted specimens and resistance to surface dissolution with increase in dose rate for implanted specimens.  相似文献   

18.
In this work, CeO2/stannate multilayer coatings on AZ91D magnesium alloy were successfully obtained by chemical conversion and sol–gel dip coating. The stannate conversion coatings were prepared from a stannate aqueous bath containing Na2SnO3, CH3COONa, Na3PO4 and NaOH at different temperatures and immersion times. Ceria films were produced on stannate/AZ91D starting from Ce(III) nitrate solutions in H2O. In some cases, the PVA was added as chelating agent. Ceria top coatings were fired at 200 °C for 1 h. Coating microstructure was examined by FE-SEM. Finally, the corrosion resistance features of the coatings were tested by the electrochemical impedance spectroscopy (EIS) in 3 wt.% NaCl solution. The effect of PVA addition was evaluated in terms of microstructure and corrosion resistance features. CeO2/stannate multilayer films, 3 μm thick, uniform, well adherent and nearly crack free were obtained. The formation of CeO2 phase was confirmed by XRD and XPS analyses. The XPS depth profiles showed a limited diffusion of Mg towards the ceramic film. The EIS tests showed a significant improvement of corrosion resistance of the multilayer coatings (~ 16.6 kΩ after 48 h in NaCl solution) with respect to the blank alloy (~ 2.4 kΩ after 48 h in NaCl solution).  相似文献   

19.
The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 × 1017, 1 × 1018 and 1 × 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 × 1017 to 1 × 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper.  相似文献   

20.
Anticorrosion properties of waterborne epoxy coatings with three structured nano-particles of TiO2 were investigated and compared. The surface morphology and structure of TiO2 have been analysed by XRD, SEM and N2 adsorption–desorption. Corrosion performance of the nano-composite coating was investigated employing electrochemical impedance spectroscopy and salt spray test. Coatings with mesoporous TiO2 (meso-TiO2) possessed the best corrosion performance among the coating specimens. The EIS results show that the resistance value of coating with meso-TiO2 was above 5.4?×?108?Ω?cm2 which was higher than the other nano-composite coatings. Possible strong interactions between polymeric matrix and meso-TiO2 caused high barrier properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号