首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the effect of ytrria stabilized zirconia (YSZ) dispersion on hot corrosion behaviour of NiCrAlY bond coat. Hot corrosion studies were conducted on NiCrAlY and NiCrAlY containing 25, 50 and 75 wt.% YSZ coatings obtained through the air plasma spray technique, in Na2SO4 + 10 wt.% NaCl environment at 800 °C. The results show that YSZ dispersion lowers the overall hot corrosion tendency of the NiCrAlY, though it enhances the inherent hot corrosion tendency of its metallic constituent (NiCrAlY). Furthermore, there exists a threshold oxide level beyond which it adversely affects the hot corrosion of the coating.  相似文献   

2.
The high temperature corrosion behavior of sputtered Ni-based superalloy K38 nanocrystalline coatings with and without yttrium addition in molten sulfate (75 wt.% Na2SO4 + 25 wt.% K2SO4) was investigated at 900 °C in air. The results indicated that nanocrystallization significantly increased the corrosion resistance through the rapid formation of a protective oxide scale. The addition of yttrium in the nanocrystalline coating furthermore improved the corrosion resistance of the coating.  相似文献   

3.
Oxide dispersed NiCrAlY bond coatings have been developed for enhancing thermal life cycles of thermal barrier coatings (TBCs). However, the role of dispersed oxides on high temperature corrosion, in particular hot corrosion, has not been sufficiently studied. Therefore, the present study aims to improve the understanding of the effect of YSZ dispersion on the hot corrosion behaviour of NiCrAlY bond coat. For this, NiCrAlY, NiCrAlY + 25 wt.% YSZ, NiCrAlY + 50 wt.% YSZ and NiCrAlY + 75 wt.% YSZ were deposited onto Inconel-718 using the air plasma spraying (APS) process. Hot corrosion studies were conducted at 800 °C on these coatings after covering them with a 1:1 weight ratio of Na2SO4 and V2O5 salt film. Hot corrosion kinetics were determined by measuring the weight gain of the specimens at regular intervals for a duration of 51 h. X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques were used to determine the nature of phases formed, examine the surface attack and to carry out microanalysis of the hot corroded coatings respectively. The results show that YSZ dispersion causes enhanced hot corrosion of the NiCrAlY coating. Leaching of yttria leads not only to the formation of the YVO4 phase but also the destabilization of the YSZ by hot corrosion. For the sake of comparison, the hot corrosion behaviour of a NiCrAlY + 25 wt.% Al2O3 coating was also examined. The study shows that the alumina dispersed NiCrAlY bond coat offers better hot corrosion resistance than the YSZ dispersed NiCrAlY bond coat, although it is also inferior compared to the plain NiCrAlY bond coat.  相似文献   

4.
In the present investigation, Cr3C2-NiCr cermet coatings were deposited on two Ni-based superalloys, namely superni 75, superni 718 and one Fe-based superalloy superfer 800H by detonation-gun thermal spray process. The cyclic hot-corrosion studies were conducted on uncoated as well as D-gun coated superalloys in the presence of mixture of 75 wt.% Na2SO4 + 25 wt.% K2SO4 film at 900 °C for 100 cycles. Thermogravimetric technique was used to establish the kinetics of hot corrosion of uncoated and coated superalloys. X-ray diffraction, FE-SEM/EDAX and X-ray mapping techniques were used to analyze the corrosion products for rendering an insight into the corrosion mechanisms. It was observed that Cr3C2-NiCr-coated superalloys showed better hot-corrosion resistance than the uncoated superalloys in the presence of 75 wt.% Na2SO4 + 25 wt.% K2SO4 film as a result of the formation of continuous and protective oxides of chromium, nickel and their spinel, as evident from the XRD analysis.  相似文献   

5.
Polycrystalline Ti3SiC2 suffered from serious hot corrosion attack in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C. In order to improve the hot corrosion resistance of this material, pre-oxidation treatment was conducted at 1200 °C in air for 2 h. A duplex oxide scale with an outer layer of TiO2 and an inner layer of a mixture of TiO2 and SiO2 was formed during the pre-oxidation. Because the outer oxide layer of the pre-oxidation treated specimens could inhibit hot corrosion process, they exhibited good hot corrosion resistance in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C for 50 h. However, during the hot corrosion the outer layer of TiO2 would degrade gradually. Once the outer layer damaged, the hot corrosion rate increased sharply, the corrosion behavior was similar to Ti3SiC2 corroded under the same conditions. The microstructure and phase compositions of the hot corrosion samples were investigated by SEM/EDS and XRD.  相似文献   

6.
Polyaniline (PANI) coatings were electrochemically deposited on substrates of stainless steel and platinum in solutions of 0.2 M H2SO4 and 0.1 M aniline by cyclic voltammetry. The corrosion protection of the PANI coatings and their failure were investigated in 0.2 M H2SO4 solution. It was observed that the corrosion protection ability of the coating to steel substrate was increased with the increase of the coating thickness. The corrosion protection ability was mainly attributed to the passivating effect of PANI due to its oxidizing ability in its emeraldine state. During its operation, the PANI coating in emeraldine state tended to gradually lose its corrosion protection ability. This gradual failure of the PANI coating, but faster than expected, was confirmed to be related to a gradual reduction of the emeraldine PANI and a gradually increased resistance between the PANI coating and the stainless steel substrate. These findings lead to a new mechanism for the corrosion protection of PANI coating and its failure.  相似文献   

7.
A. Firouzi 《Corrosion Science》2010,52(11):3579-3585
Simple and Si-modified aluminide coatings having medium-thickness (40-60 μm) have been applied on the superalloy GTD-111 by a slurry technique. Hot corrosion and cyclic oxidation performance of the uncoated and the coated superalloy were investigated by exposing samples to a molten film of Na2SO4-40 %wt NaVO3-10%wt NaCl at 780 °C and 1 h cyclic oxidation at 1100 °C in air, respectively. The presence of silicon in the aluminide structure increased the oxidation resistance by a factor of 1.7 times. In addition, a SiO2-containing scale, which formed on the Si-containing coating surface, was stable during of the hot corrosion testing.  相似文献   

8.
An electroplating process was proposed for obtaining a protective Cr/Cu deposit on the two-phase Mg alloy AZ91D. The corrosion behavior of Cu-covered and Cr/Cu-covered AZ91D specimens was studied electrochemically in 0.1 M H2SO4 with different NaCl concentrations. Experimental results showed that the corrosion resistance of an AZ91D specimen improved significantly after Cr/Cu electrodeposition. The corrosion resistance of Cr/Cu-covered AZ91D decreased with increasing NaCl concentration in 0.1 M H2SO4 solution. After immersion in a 0.1 M H2SO4 with a NaCl-content above 3.5 wt.%, the surface of Cr/Cu-covered AZ91D suffered a few blisters. Cracks through the Cr deposit provided active pathways for corrosion of the Cu and the AZ91D substrate. Formation of blisters on the Cr/Cu-covered AZ91D surface was confirmed based on the results of an open-circuit potential test, which detected an obvious potential drop from noble to active potentials.  相似文献   

9.
Hot corrosion studies of thermal barrier coatings (TBCs) with different YSZ/LaMgAl11O19 (LaMA) composite coating top coats were conducted in 50 wt.% Na2SO4 + 50 wt.% V2O5 molten salt at 950 °C for 60 h. Results indicate that TBCs with composite coating top coats exhibit superior oxidation and hot corrosion resistances to the TBC with the traditional YSZ top coat, especially for which has a LaMA overlay. The presence of LaMA can effectively restrain the destabilization of YSZ at the expense of its own partial degradation. The hot corrosion mechanism of LaMA coating and the composite coatings have been explored.  相似文献   

10.
The Ti(Y)N coatings were successfully deposited onto 18-8 stainless steel substrates by the hollow cathode discharge ion-plating method. The influence of the rare-earth element yttrium on the TiN coating properties was studied. The results show that the adhesion of the coating to the substrate were evidently enhanced by adding a small amount (0.2 wt.%) of the rare-earth element yttrium, showing a critical load of about 390 g which is much higher than that (230 g) of the TiN coating/substrate. Investigation on the corrosion resistance of the Ti(Y)N coating and the TiN coating was performed in 0.5 N Na2SO4 + 0.1 N H2SO4 + 0.1 N NaCl corrosion media by means of an electrochemical potentiodynamic polarization. The Ti(Y)N coating exhibited much better corrosion resistance than the TiN coating, whose passivity maintaining current is about one order in magnitude smaller than that of the TiN coating.The Ti(Y)N coatings deposited on some HSS-based tools were presented and compared with the TiN coating. The service lifetime of Ti(Y)N coated tools is approximately 36% higher (on the pinion shape cutters) and about 50% higher (on punch side pin) compared to that of TiN coated. The Ti(Y)N coatings showed such excellent performance. It is attributed to that the transition area of Ti(Y)N/substrate consisted of three sublayers which revealed a gradual change of phase structure and composition, so that the adhesion of the coating/substrate was evidently enhanced. Moreover, Ti(Y)N coating showed a preferred orientation with (111) plane which is favorable to improve wear resistance and corrosion resistance of the coating.  相似文献   

11.
Corrosion performance, morphology, and electrochemical characteristics of cerium-based conversion coatings on Al 2024-T3 were examined as a function of phosphate post-treatment time and temperature. Corrosion resistance improved after post-treatment in 2.5 wt.% NH4H2PO4 for times up to 10 min or temperatures up to 85 °C. Electrochemical impedance spectroscopy and polarization testing correlated to neutral salt spray corrosion performance. Hydrated cerium oxide and peroxide species present in the as-deposited coatings were transformed to CePO4·H2O for post-treatments at longer times and/or higher temperatures. Based on these results, processes active during post-treatment are kinetically dependent and strongly influenced by the post-treatment time and temperature.  相似文献   

12.
A NiCrAlYSi coating was deposited by arc ion plating on a cobalt-base super-alloy K40S to improve its hot corrosion resistance at 1173 K in air. The K40S suffered from accelerated corrosion and formed non-protective scale with poor adherence when its surface was beneath Na2SO4 and Na2SO4 containing 25 wt.% NaCl salt deposits. After the K40S was coated with NiCrAlYSi coating, a protective α-Al2O3 scale was formed on the coating. Although the NiCrAlYSi coating changed into NiCoCrAlYSi during corrosion processes, it still possessed good corrosion resistance. In addition, the corrosion mechanisms were discussed on a basis of basic fluxing model.  相似文献   

13.
Y–Co-modified aluminide coatings on nickel base superalloys were prepared by pack cementation method. Effect of Y2O3 content in the pack mixture on microstructure and hot corrosion resistance of the coatings was investigated. The results show that with the increase in Y2O3 content, the content of Co in the coatings increases. The mass gain of the coatings with Y2O3 addition of 1, 2 and 3 wt.% is 0.6, 0.55 and 0.42 mg/cm2 after hot corrosion at 1173 K for 100 h, respectively. Y2O3 addition accelerates the diffusion of Co and thus increases the hot corrosion resistance of the coating.  相似文献   

14.
The work addresses the influence of Mn and Mo additions on corrosion resistance of AISI 304 and 316 stainless steels in 30 wt.% H2SO4 at 25 and 50 °C. Corrosion mechanism was determined by gravimetric tests, DC polarization measurements and electrochemical impedance spectroscopy (EIS). The morphology and nature of the reaction products formed on the material surface were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Reduction of temperature from 50 to 25 °C drastically decreased the corrosion rate of AISI 304 and 316 stainless steels in sulphuric acid solution. Mn additions did not affect significantly the general corrosion resistance due to its low ability to form insoluble compounds in acid medium. Meanwhile, the formation of molybdenum insoluble oxides enhanced the corrosion performance.  相似文献   

15.
Hot corrosion of Ni3Al intermetallic compound in the presence of sulphate-chloride mixtures was studied. A comminuted Ni3Al mixed with NaCl-Na2SO4, NaCl-Li2SO4, LiCl-Na2SO4, LiCl-Li2SO4 additions was oxidized in the air up to 1000 °C with linearly increasing temperature and isothermally within the temperature range of 500-700 °C. The corrosion process was observed by thermogravimetric method using Mettler thermoanalyzer.The experiments indicated that LiCl (∼10 wt.%)-Li2SO4 mixture was the most corrosive agent. It was also found that by addition of MgO the corrosion of Ni3Al was reduced. Phase composition of the corrosion products was established by X-ray diffraction analysis; there were detected Al2O3, Al2S3, NaAlO2 (or LiAlO2) as intermediate products, nickel sulphides, NiO and NiAl2O4. NiAl2O4 spinel was formed only at the highest temperatures, while at lower temperatures alumina was present instead of spinel.Hot corrosion behaviour of Ni3Al in sulphate-chloride mixtures in air atmosphere.  相似文献   

16.
To study the effect of ZrO2 particles on corrosion behaviour of Cr coating, steel samples were plated in Cr(VI) baths without and with ZrO2. The corrosion behaviour of plated samples was studied at different exposure times in a solution containing 0.01 mol l−1 H2SO4 + 0.5 mol l−1 Na2SO4 using cyclic voltammetry and impedance spectroscopy. The equivalent circuit model Re(QcRpore)(Qs[ORs]) was proposed to fit the corrosion process and the parameters Y0(Qc),Y0(Qs) and Rpore reflecting corrosion behaviour of samples were evaluated. From the results, it was found that samples plated in bath containing ZrO2 exhibited improved protective properties as a result of the structural characteristics of the coatings obtained; namely, the size and shape of pores.  相似文献   

17.
The corrosion behaviour of die-cast AZ91D magnesium alloys in sulphate solutions was investigated by SEM, FTIR and polarization measurements. For immersion times less than 48 h, no pitting corrosion occurred and only generalized corrosion was apparent. According to the polarization curves, the corrosion rate order of the die-cast AZ91D Mg alloy in three aqueous solutions was: NaCl > MgSO4 > Na2SO4. The main corrosion products were Mg(OH)2 and MgAl2(SO4)4·22H2O in the sulphate solutions and the product film was compact. Precipitation of MgAl2(SO4)4·22H2O required a threshold immersion time.  相似文献   

18.
Z.B. Bao 《Corrosion Science》2009,51(4):860-751
A gradient NiCoCrAlYSiB coating was prepared on a Ni-base superalloy using arc ion plating (AIP) and subsequent gaseous phase aluminisation techniques. Hot corrosion of normal NiCoCrAlYSiB and the gradient coating in pure Na2SO4 and Na2SO4/NaCl (75:25, wt./wt.) salts was performed at 900 °C in static air. The corrosion results indicated an enhanced corrosion resistance to both salts for the gradient NiCoCrAlYSiB coating, which the improved performance of it should be attributed to the β aluminide ‘‘pool” at the surface layer. By partially sacrificing Al2O3 (i.e. Al), the gradient NiCoCrAlYSiB coating specimen behaved excellently in the two kinds of salts. The grain growth during the gaseous phase aluminisation and the corrosion mechanism, including the role NaCl played in the mixture salt corrosion, are discussed.  相似文献   

19.
Corrosion behaviour of type 304 stainless steel was investigated, with particular attention to additive effects of hydrosulphite (Na2S2O4) on corrosion in 0.1 mol/l H2SO4 solution with various amounts of Na2S2O4 up to 60 mmol/l.Corrosion of SUS304 occurred below pH 3.0 at 30 °C in a 0.1 mol/l H2SO4 solution in which Na2S2O4 was added to 0.1-20 mmol/l. The maximum corrosion rate at 30 °C was measured as 7.2 g/m2 h (7.9 mm/y) in 0.1 mol/l H2SO4-10 mmol/l Na2S2O4 at pH 1.2. Microscopic surface observation revealed that active dissolution was accompanied by intergranular corrosion at the metal surface.The SUS304 was easily passivated in 0.1 mol/l H2SO4 solution with more than 30 mmol/l Na2S2O4. NiS was detected in the passivated film.  相似文献   

20.
Hybrid coatings based on organically modified silicate (Ormosil)-NiZn ferrite/polyaniline (10-30 wt.%) were synthesized through a sol-gel technique. Tetraethylenepentamine, 3-glycidoxypropyltrimethoxysilane, tetraethoxysilane and Ni0.5Zn0.5Fe2O4/polyaniline were used as precursors for the hybrid coatings. These hybrid films were deposited via spin coating onto an aluminum alloy to improve the corrosion protection. The effects induced by the NiZn ferrite/polyaniline content on the chain dynamics, ferromagnetic behavior and corrosion performances of the coated samples were investigated. The rotating-frame spin-lattice relaxation times and scale of the spin-diffusion path length indicated that the configuration of the hybrid films was highly cross-linked, dense and adhered to the aluminum alloy substrates. The magnetic properties of the resulting hybrids showed super-paramagnetic behavior, such as zero coercive force (coercivity = 0 G) and a low blocking temperatures (45 K). Potentio-dynamic and salt-spray analysis revealed that the hybrid films provided an exceptional barrier and corrosion protection in comparison with untreated aluminum alloy substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号