首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acrylonitrile butadiene rubber (NBR)‐based composites were prepared by incorporating short nylon fibers of different lengths and concentration into the matrix using a two‐roll mixing mill according to a base formulation. The curing characteristics of the samples were studied. The influence of fiber length, loading, and rubber crosslinking systems on the properties of the composites was analyzed. Surface morphology of the composites has been studied using Scanning Electron Microscopy (SEM). Addition of nylon fiber to NBR offers good reinforcement, and causes improvement in mechanical properties. A fiber length of 6 mm was found to be optimum for the best balance of properties. It has been found that at higher fiber loadings, composites show brittle‐type behavior. Composites vulcanized by the dicumyl peroxide (DCP) system were found to have better mechanical properties than that by the sulfur system. The swelling behavior of the composites in N,N‐dimethyl formamide has been analyzed for the swelling coefficient values. Composites vulcanized in the DCP system were found to have higher rubber volume fraction than that in the sulfur system, which indicates better rubber–fiber interaction in the former. The crosslink densities of various composites were also compared. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1023–1030, 2004  相似文献   

2.
Carbon black/natural rubber latex masterbatch in the form of spherical beads was prepared according to the acid-precipitation method. High-loading carbon black (40 phr) was incorporated in natural rubber with the aid of a nonionic surfactant (Nonidet P40). Shearing the beads in an internal mixer provided good integration of carbon black in the rubber matrix and hence the high bound rubber content. Results confirmed the contribution of chemical interaction to the bound rubber content. By an oxidation process, the size of modified carbon black was reduced, whereas the large agglomeration took place in the case of partially graphitized carbon black. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 489–498, 2001  相似文献   

3.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006  相似文献   

4.
Pyrrole was polymerized in the presence of anhydrous ferric chloride as oxidant and p‐toluene sulfonic acid as dopant. Polypyrrole‐coated short nylon fibers were prepared by polymerizing pyrrole in the presence of short nylon fibers. The resultant polypyrrole (PPy) and PPy‐coated nylon fiber (F‐PPy) were then used to prepare rubber composites based on acrylonitrile butadiene rubber (NBR). The cure pattern, direct current (DC) conductivity, mechanical properties, morphology, thermal degradation parameters, and microwave characteristics of the resulting composites were studied. PPy retarded the cure reaction while F‐PPy accelerated the cure reaction. Compared to PPy, F‐PPy was found to be more effective in enhancing the DC conductivity of NBR. The tensile strength and modulus values increased on adding PPy and F‐PPy to NBR, suggesting a reinforcement effect. Incorporation of PPy and F‐PPy improved the thermal stability of NBR. The absolute value of the dielectric permittivity, alternating current (AC) conductivity, and absorption coefficient of the conducting composites prepared were found to be much greater than the gum vulcanizate. PPy and F‐PPy were found to decrease the dielectric heating coefficient and skin depth significantly. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
王超  刘晓媛  刘爱芹 《橡胶工业》2016,63(2):115-117
研究热裂解气相色谱法测定天然胶乳中的干胶含量。试验结果表明,干胶含量与裂解主要产物峰面积呈现良好的线性关系,采用标准曲线法测定天然胶乳中的干胶含量,重复测定的相对标准偏差为0.14%,与国标法的平均相对误差为1.51%,定量分析结果准确,操作简便。  相似文献   

6.
To improve adhesion between fiber and matrix, natural rubber was reinforced with a special type of alkali‐treated grass fiber (Cyperus Tegetum Rox b). The cure characteristics and mechanical properties of grass‐fiber‐filled natural rubber composites with different mesh sizes were studied with various fiber loadings. Increasing the amount of fibers resulted in the composites having reduced tensile strength but increased modulus. The better mechanical properties of the 400‐mesh grass‐fiber‐filled natural rubber composite showed that the rubber/fiber interface was improved by the addition of resorcinol formaldehyde latex (RFL) as bonding agent for this particular formulation. The optimum cure time decreased with increases in fiber loading, but there was no appreciable change in scorch time. Although the optimum cure time of vulcanizates having RFL‐treated fibers was higher than that of the other vulcanizates, it decreased with fiber loading in the presence of RFL as the bonding agent. But this value was lower than that of the rubber composite without RFL. Investigation of equilibrium swelling in a hydrocarbon solvent was also carried out. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3151–3160, 2006  相似文献   

7.
The stress relaxation behavior of natural rubber (NR) and its composites reinforced with short coir fibers under tension was analyzed. The rate of stress relaxation was a measure of the increase in the entropy of the compounds: the higher the rate was, the greater the entropy was. At lower strain levels, the relaxation mechanism of NR was independent of strain level. However, the rate of relaxation increased with the strain level. Also, the strain level influenced the rate of stress relaxation considerably in the coir‐reinforced NR composites. However, the relaxation mechanisms of both the unfilled compound and the composite were influenced by the strain rate. The rate of relaxation was influenced by fiber loading and fiber orientation. From the rate of stress relaxation, we found that fiber–rubber adhesion was best in the composite containing fibers subjected to a chemical treatment with alkali, toluene diisocyanate, and NR solutions along with a hexaresorcinol system as a bonding agent. In this study, the stress relaxation curves could not be viewed as segments with varying slopes; however, a multitude of inflection points were observed on the curves. Hence, we propose neither a two‐step nor three‐step mechanism for the coir‐fiber‐reinforced NR composites as reported for some other systems. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 96–104, 2004  相似文献   

8.
The world tendency toward using recycled materials demands new products from vegetable resources and waste polymers. In this work, composites made from powdered tire rubber (average particle size: 320 μm) and sisal fiber were prepared by hot‐press molding and investigated by means of dynamic mechanical thermal analysis and tensile properties. The effects of fiber length and content, chemical treatments, and temperature on dynamic mechanical and tensile properties of such composites were studied. The results showed that mercerization/acetylation treatment of the fibers improves composite performance. Under the conditions investigated the optimum fiber length obtained for the tire rubber matrix was 10 mm. Storage and loss moduli both increased with increasing fiber content. The results of this study are encouraging, demonstrating that the use of tire rubber and sisal fiber in composites offers promising potential for nonstructural applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 670–677, 2004  相似文献   

9.
尼龙短纤维接枝橡胶复合材料增强胎面胶   总被引:3,自引:0,他引:3  
将用γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(A174)或γ-氨丙基三乙氧基硅炕(A1100)处理后的尼龙短纤维分别加入到特软羧基丁苯胶乳中,浸泡10min后于110℃烘箱中干燥90min,可制备尼龙短纤维接枝橡胶复合材料。结果表明,经接枝改性的尼龙短纤维橡胶复合材料的拉伸强度超过了18.00MPa,100%定伸应力和300%定伸应力为未处理尼龙短纤维橡胶复合材料的1.5~2.0倍,撕裂强度提高了约82%。将该复合材料加入载重轮胎胎面胶中,可提高胎面胶的抗湿滑性。  相似文献   

10.
采用间苯二酚-甲醛-羧基丁苯胶乳对尼龙短纤维进行了预处理,研究了自处理短纤维/橡胶复合材料(SFRC)的性能,并与乌龙牌预处理SFRC进行了对比。结果表明,羧基丁苯胶乳的用量为10~15份时,SFRC的界面黏合效果较好。预处理短纤维在实验范围内,随其用量的增加,SFRC的拉伸强度和扯断仲长率呈下降趋势,100%定伸应力明显升高;当其用量为5份时,SFRC的撕裂强度达到最大值。自处理SFRC的力学性能与乌龙牌预处理的相当。  相似文献   

11.
Carbon nanotubes (CNTs), with their high aspect ratio and exceptionally high mechanical properties, are excellent fillers for composite reinforcement if they are uniformly dispersed without aggregation. Combining the latex compounding and self-assembly techniques, we prepared a novel natural rubber (NR)/multiwalled carbon nanotube (MWCNT) composite. Before self-assembly, the MWCNTs were treated with mixed acid to ensure that the MWCNTs were negatively charged under an alkaline environment. The structure of the MWCNTs was tested with Fourier transform infrared spectroscopy. The properties of composites with different MWCNT loadings were characterized with transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and tensile testing. The results indicate that the MWCNTs were homogeneously distributed throughout the NR matrix as single tubes and had good interfacial adhesion with the NR phase when the MWCNT loading was less than 3 wt %. In particular, the addition of the MWCNT led to a remarkable reinforcement in the tensile strength, with a peak value of 31.4 MPa for an MWCNT content of 2 wt %, compared to the pure prevulcanized NR (tensile strength = 21.9 MPa). The nanocomposites reinforced with MWCNTs should have wide applications because of the notable improvement in these important properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Nanoscale silica was synthesized by acid hydrolysis of sodium silicate using dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by SEM, BET adsorption, and XRD. The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. This synthesized nanosilica was used in place of conventional silica in HRH (hexamethylenetetramine, resorcinol and silica) bonding system for natural rubber/Nylon‐6 short fiber composite. Nanosilica was also used as reinforcing filler in natural rubber/Nylon‐6 short fiber hybrid composite. Mechanical, thermal, and dynamic mechanical properties of the composites were evaluated. The introduction of the nanosilica in hybrid composites improved the tensile strength, modulus, and tear strength through improved interaction with the matrix which is facilitated by the higher surface area. Abrasion loss and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. The hybrid composites showed anisotropy in mechanical properties. Peak rate of thermal decomposition decreased and temperature of initiation of thermal degradation increased with silica content, indicating improved thermal stability of the hybrid composites. The storage modulus and loss modulus showed two‐stage dependence on frequency at higher fiber loading. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The effects of pH value of reaction system, reaction time, and reaction temperature on the chlorination reaction in the preparation of chlorinated natural rubber (CNR) from natural rubber latex were discussed. It has been found from the thermal analysis that the thermal degradation of CNR in nitrogen is a one-step reaction, and 30% carbonide with a stable structure remained at 360 to 700°C; whereas the thermo-oxidative degradation of CNR in air is a multistep reaction, and the thermal degradation ratio reaches to 100% at 560°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2863–2867, 1999  相似文献   

14.
Composites composed of rubber, sepiolite fiber, and resorcinol–formaldehyde latex‐coated aramid short fibers were prepared. Mechanical and morphological characterizations were carried out. To investigate the effect of interfacial debonding on the failure behavior of short‐fiber‐reinforced rubber composites, a micromechanical representative volume element model for the composites was developed. The cohesive zone model was used to analyze the interfacial failure. We found that computational results were in good agreement with the experimental results when the interfacial fracture energy was 1 J/m2 and the interfacial strength was 10 MPa. A parametrical study on the interface and interphase of the composite was conducted. The results indicate that a good interfacial strength and a choice of interphase modulus between 40 and 50 MPa enhanced the ductile behavior and strength of the composite. The ductile properties of the composite also increased with increasing interfacial fracture energy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41672.  相似文献   

15.
This article focuses mainly on the effect of maturation time on the rheological behavior of unvulcanized natural rubber (NR)–styrene butadiene rubber (SBR) latex blends. Viscosity shows a composition-dependent behavior with maturation time. It was found that there is a marginal decrease in viscosity for all the systems with maturation time except for the 70/30 NR–SBR blend. In this blend, there is a sharp decrease in viscosity with maturation time. This is associated with the exchange of stabilizers with one another until an equilibrium is reached; that is, all the particles of the blend are stabilized with random mixture of stabilizers. The structural build up observed in 70/30 NR–SBR blend was found to be diminished as the maturation time increases. At equilibrium, there is no further exchange of stabilizers. The behavior of this blend has been explained with the help of a schematic model. The effects of blend ratio and surface active agents on the viscosity were also studied. In addition, the time-dependent flow behavior of prevulcanized latex blends was evaluated as a function of vulcanizing systems and prevulcanization time. There is a regular increase in viscosity with prevulcanization time. However, after 3 h, the viscosity of almost all blends levels off, indicating that the curing reaction is complete within this time. Finally, the morphological changes occurred during film formation of the blends were studied using scanning electron microscopy. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1473–1483, 1998  相似文献   

16.
The effects of pH value of reaction system, reaction time, reaction temperature, bromine concentration, and amount of potassium persulfate on the bromination reaction in the preparation of brominated natural rubber (BNR) from natural rubber latex were discussed. It has been found from the thermal analysis, that is, the thermal degradation of BNR in nitrogen is a two‐step reaction, and 16% carbonide with a stable structure remained at 470–650°C. The thermo‐oxidative degradation of BNR in air is also a two‐step reaction, and the percentage of degraded BNR reaches to nearly 100% at 600°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Sulfur prevulcanization of natural rubber latex was conducted at 60, 70, 80, and 90°C for different periods. The extent of crosslinking was assessed. Tensile properties, water absorption, leaching, and stress-relaxation characteristics of the films were also evaluated. The volume fraction of rubber (Vr), which is a measure of crosslink density of the films, showed a maximum when prevulcanization was conducted at 80°C for 2 h or at 90°C for 1 h. At lower temperatures, the rate of reaction was slow. At each temperature, tensile strength and elongation at break decreased when the prevulcanization time increased, whereas the modulus increased up to a maximum crosslinking and thereafter decreased. Water absorption and leaching were more rapid in prevulcanized film than in postvulcanized film. The rate of stress relaxation slightly increased as the extent of prevulcanization increased. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1913–1920, 1997  相似文献   

18.
Montmorillonite (Mt) was intercalated with cetyltrimethylammonium bromide and functionalized with three types of aminosilane (3‐aminopropyltrimethoxysilane, n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane and 3‐[2‐(2‐aminoethylamino)ethylamino]propyltrimethoxysilane). The modified Mt was compounded with natural rubber (NR)/epoxidized natural rubber (ENR) via one‐step latex compounding. The effect of the modified Mt content on the oil resistance and mechanical properties of the NR/ENR/modified Mt composites was investigated. The X‐ray diffraction patterns of the composites showed partial intercalation/exfoliation of the modified Mt in the rubber matrix. Cryogenic fracture and X‐ray fluorescence results revealed highly dispersed modified Mt in the composites in the presence of 10 phr ENR. All three aminosilane groups slightly improved the oil resistance, with the long‐alkyl‐length group producing the greatest improvement. The addition of a small amount of modified Mt improved both oil resistance and tensile strength by increasing in the average diffusion path length in the NR matrix and enhancing the interaction between the modified Mt and the epoxide groups in ENR. The addition of 1.0 phr of modified Mt increased the tensile strength by 18% and decreased the elongation at break by 12% compared with a neat NR/ENR blend. © 2017 Society of Chemical Industry  相似文献   

19.
Thermooxidative decomposition and its kinetics on chlorinated natural rubber (CNR) from latex are studied by thermal gravimetry (TG) analysis and TG coupled with FTIR spectroscopy. The thermooxidative decomposition of CNR is a two‐step reaction. The first step is the reaction of dehydrochlorination of which the reaction order (n) is 1.1; the reaction activation energy (E) increases linearly with the increment of the heating rate (B), and the apparent activation energy (E0) is 101.7 kJ/mol. The initial temperature of weight loss (T0) is 1.29B + 248.7, the final temperature of weight loss (Tf) is 0.86B + 312.4, and the temperature at the maximum weight loss ratio (Tp) is 1.05B + 286.2. The decomposition ratio at Tp (Cp) is not affected by B, and its average value is 38%. The decomposition ratio at Tf (Cf) is also not affected by B, and its average value is 60%. The second step is an oxidative decomposition reaction of the molecular main chain. The value of n is 1.1, E increases linearly with the increment of B, E0 is 125.0 kJ/mol, the relation between B and T is similar to that of the first step, and Cf approaches 100%. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1305–1309, 2001  相似文献   

20.
Hydrogenation is an important method of chemical modification, which improves the physical, chemical, and thermal properties of diene‐based elastomers. Natural rubber latex (NRL) could be hydrogenated to a strictly alternating ethylene–propylene copolymer using diimide generated in an in situ system. The diimide generated using the in situ technique for hydrogenation of NRL was accomplished by thermolysis of p‐toluenesulfonyl hydrazide (TSH). A molar ratio of TSH to double bonds equal to 2 : 1 was found to be the optimum ratio to provide a high percentage of hydrogenation. 95% Degree of saturation of NRL was achieved in o‐xylene. Hydrogenated products are characterized by FTIR and NMR spectroscopy. The thermal stability of hydrogenated rubber was improved as shown from the results of thermogravimetric analysis. From the differential scanning calorimetry measurement, the glass transition temperature of the hydrogenated product did not appear to change. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2885–2895, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号