首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在高地应力软岩地层中开挖隧道,易发生大变形,合理地选用初期支护的钢架形式,对软岩大变形的控制是非常重要的。本文依托成兰铁路-茂县隧道,通过现场试验和数值计算研究挤压性软岩大变形隧道的初支钢架选型,主要得出以下结论:(1)高地应力软岩隧道不宜选用强度较弱的钢架作为第一层支护,第一层支护应能保证支护封闭时的合理洞形|(2)挤压性大变形隧道宜采用多层、多次的支护方法,适当释放围岩应力,保证隧道的长期稳定|(3)大变形隧道多采用分部工法开挖,易导致支护结构受力不均,应提早支护封闭时机,改善结构受力。  相似文献   

2.
《施工技术》2021,50(19)
兰渝铁路控制工程木寨岭隧道是极高地应力软岩大变形隧道,隧道主要穿越断层挤压破碎带,破碎带及其附近影响区域围岩极破碎、自稳性极差,且围岩呈极发育,受高地应力的影响,围岩极不稳定,挤压大变形明显,变形大、变形快、地质流变性强、极易发生坍塌。为解决木寨岭隧道挤压破碎带极高地应力软岩大变形施工难题,开展了应力释放、支护措施攻关等工作,主动控制高地应力软岩大变形问题,加强支护措施、优化结构轮廓、尽量保护围岩,最终采用"小导洞应力释放+3层初期支护+长锚索+单层二次衬砌、圆形断面结构"达到隧道贯通,有效控制了隧道大变形问题。  相似文献   

3.
隧道在穿越断层地带时由高地应力引起的软岩大变形问题是隧道建设施工中难点,给隧道建设的施工与进度带来很大影响。本文结合区域地应力,围岩强度实验等分析柿子园隧道穿越断层地区产生支护结构破坏现象的原因,并对围岩压力,钢架应力,围岩变形进行了现场监测,得到了高地应力软岩大变形引起的支护应力特征与变形特征,提出了控制大变形的技术措施。研究表明,高地应力区软岩隧道穿越断层地带时,由于复杂的构造应力造成隧道结构受力不均,隧道左右两侧围岩压力,支护内力与围岩变形呈现出很大的不对称性。采用优化断面形式、加强初支刚度、非对称预留变形量和锚杆布置等措施可以有效减小隧道结构受力,控制隧道变形。  相似文献   

4.
高地应力软弱围岩隧道施工易发生软岩大变形不良地质灾害,进一步引发掌子面失稳塌方、初支结构破坏、钢拱架弯折、初支结构侵限等不良现象,严重影响施工安全,阻碍工期。依托九绵高速白马隧道工程,结合工程特点,从围岩自身力学特性及高地应力软岩变形特征方面深入分析了白马隧道初支侵限机理,并针对此特点,提出了一套适用于软岩大变形初支结构侵限专项施工方案。研究结果表明,由于地下水的侵蚀,炭质千枚岩发生软化,岩体力学性质变差,自承能力降低,在高地应力持续作用下,围岩发生挤压大变形,进一步诱导初支侵限。变更支护方案后,6 m锚杆结合小导管注浆加固对围岩变形有一定控制作用,但6 m锚杆无法将松动区岩块锚固在稳定母体中,不能充分发挥锚杆悬吊能力,对围岩变形控制效果有限,无法满足现场围岩变形需求,建议采用8 m长锚杆。初支拆换过程中应实时监测围岩变化情况,明确围岩变化方向、速率、累计值等,并根据现场实时监测数据反馈施工,实时调整支护参数,确保施工质量。  相似文献   

5.
针对大草山隧道穿越二叠系炭质板岩、断层破碎带等软质岩,可能产生软岩大变形,并存在高地应力-极高地应力的特殊地质特征,将大变形段落衬砌结构分为三级进行特殊设计,提出了"放抗结合,长锚围压,固结成拱,强支跟进"的设计理念及"变松动圈为承载拱"的"围压拱"支护体系,并对针对性预案设计进行探讨。通过模拟计算,采用预应力钢束(锚杆)加固围岩松动圈为承载拱后,可有效控制围岩及结构变形。隧道软岩大变形采用"围压拱"支护方案,将"大变形"问题转化为"一般变形"问题,研究方法和结论为软岩大变形隧道衬砌结构设计提供一定的理论支撑,对更加科学合理的确定软岩隧道衬砌结构参数具有一定的参考价值。  相似文献   

6.
基于考虑应变软化特性的深埋隧道弹塑性解,采用锚杆中性点理论,系统地分析高地应力软岩隧道短锚杆支护失效机制,并论证高地应力软岩隧道中对锚杆长度进行加长的必要性:一方面增大锚固段的围压以提高黏结强度,另一方面增大锚杆头部和尾部处的围岩位移差以提高锚杆对围压的锚固效用。将高密度支护模式的短锚杆等效为复合岩体,同时将长锚杆对围岩的锚固作用考虑为作用在隧道洞壁处的等效支护力,建立隧道长、短锚杆联合支护力学模型,考虑锚杆和围岩的相互作用,得到长、短锚杆联合支护后的围岩特征曲线。通过对比每延米隧道锚杆用量相同情况下,普通短锚杆支护和长、短锚杆联合支护状态下的围岩特征曲线,说明了长、短锚杆联合支护策略对高地应力软岩隧道变形控制的有效性。该长、短锚杆联合支护力学模型考虑了长锚杆与围岩的相互作用,为高地应力软岩隧道长锚杆支护长度的设计提供了一种计算方法。  相似文献   

7.
结合正在修建的兰新铁路第二双线LXS-7标存在极高地应力的大梁隧道,系统开展型钢钢架与格栅钢架在高地应力软岩隧道支护中适应性的现场对比试验研究。现场设置型钢钢架支护段与格栅钢架支护段各20 m,通过现场试验及三维数值仿真模拟,对施工过程中的围岩位移、初支钢架应力、围岩-初期支护接触压力进行对比分析,结果表明:(1)在高地应力软岩隧道支护中,型钢钢架对沉降及水平位移的约束作用较强,但支护后期变形呈现台阶式增长趋势,支护设立2个月后仍无明显收敛趋势。相应地,支护结构承受了较大的围岩压力,试验断面围岩-初期支护接触压力最大值为336 kPa,钢架应力较大;二衬施作后围岩变形仍在增加,对二衬结构会有一定影响。(2)格栅钢架属于柔性支护,初期支护设立一周后拱顶累计变形达350 mm,可较好地释放高地应力区围岩应力与变形,但支护内力及变形急剧增加无法收敛。(3)为更好地控制围岩变形,在格栅支护设立一周后增设工字钢套拱作为后期刚性支护,围岩变形曲线呈现明显收敛趋势,洞室变形稳定至446 mm。断面围岩-初期支护接触压力实测最大值为190 kPa,有效地控制支护的变形与格栅应力。(4)试验表明,现场采用“先柔后刚”的支护原则,即先架立格栅后加设套拱对高地应力软岩隧道进行支护,可有效控制软岩大变形及支护内力,结构合理。经济性分析也表明,此支护形式具有较好的经济性,是一种可适用于高地应力软岩隧道的支护结构。  相似文献   

8.
隧道穿越高地应力深埋软岩地层时,开挖卸荷扰动会引发围岩产生严重的挤压变形和松动破坏,导致支护结构出现大变形。以玉磨铁路万和隧道穿越高地应力花岗岩构造破碎带为工程依托,首先基于经典Kastner公式和Caquot公式确定考虑松动效应的高地应力构造破碎带围岩特征曲线;然后基于收敛约束理论分析围岩与支护结构的稳定性,明确考虑围岩松动效应和控制支护让压程度的必要性;最后通过多工况比选确定第二层增设钢拱架的支护时机和支护参数。研究结果表明:高地应力环境下,前期作用于支护结构的围岩压力以形变压力为主。随着应力的释放,断面变形达0.8 m时的松动压力占比已超过30%,此时考虑松动效应的围岩对支护结构产生1.094 MPa的围岩压力,不考虑松动效应的围岩压力仅为0.765MPa。因此在进行隧道稳定性分析及支护设计时,不能忽视围岩松动效应的影响;在第一层初期支护让压至一定程度后应及时增设第二层钢拱架抵抗围岩变形。以断面变形达到0.45 m时设置第二层钢拱架作为最优支护时机,以间距为0.6 m的I22b型钢拱架作为最佳支护参数,现场监测数据表明该大变形支护方案取得了良好的控制效果。研究成果能准确反映高地应力构造破碎带隧道大变形灾变过程,对类似工程的支护设计优化有明确的指导意义。  相似文献   

9.
在高应力作用下,围岩发生大变形破坏的现象非常普遍,硬岩常常产生严重的岩爆灾害,软岩则会表现出挤压大变形问题,严重影响深部工程安全。在这种条件下采用的支护体系不仅要具有较高的承载力,而且要能够适应较大的围岩变形而本身不发生破坏。提出了一种拉压耦合大变形锚杆,并详细介绍了它与围岩之间的相互作用机理。新型锚杆通过改善锚固结构,优化锚杆受力状态,提高了锚固结构的极限承载力,使锚杆杆体的变形性能得到充分的发挥,避免了传统锚杆因杆体不均匀变形导致的破坏问题。因而,高应力大变形条件下新型锚杆的锚固性能更优,更有利于保持围岩稳定。室内实验研究证实,在同等条件下拉压耦合锚杆的极限承载力明显大于传统锚杆,并且具有良好的大变形特性。针对矿山深部开采中遇到的软岩大变形和硬岩岩爆等灾害,新型锚杆将实现更优的加固效应。  相似文献   

10.
高地应力深埋软岩隧道开挖卸荷后,断面周边围岩的径向应力急剧降低,围压从围岩深部至隧道洞壁急剧衰减,不同位置岩石的应变软化和剪胀扩容受围压效应的控制。基于三维H-B强度准则建立考虑围压效应和中主应力的深埋软岩隧道弹塑性解计算方法,并依托中老铁路新华隧道计算深埋滇中红层软岩隧道的挤压变形,讨论围压效应和中主应力对围岩应力–应变特征、强度软化特征和剪胀扩容特征的影响,探讨围压效应在不同峰值强度、原岩应力和支护反力下的敏感性。研究结果表明:围压效应通过降低岩石的临界塑性偏应变η*和增大岩石的峰值剪胀扩容系数Kψp,从而加剧围岩的软化和剪胀程度,进而加剧隧道的挤压变形;中主应力会降低围岩的软化程度,加剧围岩的剪胀扩容,但整体上能有效抑制深埋软岩隧道的挤压变形;岩石峰值强度越低、埋深地应力越大时,隧道的挤压变形受围压效应的影响程度越高。因此分析高地应力深埋软岩隧道开挖卸荷的力学响应时,不能忽视围压效应的影响;支护反力能有效抑制效围压效应对隧道挤压变形的影响,在深埋软岩隧道的施工建设时应及时施作支护结构约束围岩的变形。  相似文献   

11.
以在建的成都-兰州铁路杨家坪隧道为工程依托,选取条件基本相同的30m典型围岩区段为试验段,对普通锚杆、早强锚杆支护时的洞周位移、围岩与初支接触压力、型钢拱架应力及其锚杆轴力进行实测对比分析,探讨了早强锚杆在高地应力陡倾层状软岩隧道中的作用机制。结果表明:高应力软岩隧道中锚杆轴力为拉力,早强锚杆比普通锚杆轴力更大,可以使隧道洞周位移减小40%|早强锚杆使隧道边墙围岩压力和钢架拱顶应力减小,围岩压力分布和钢架受力趋于均匀|早强锚杆通过注浆材料深入围岩,可以提高围岩层面强度|及时发挥锚固作用,抑制了围岩渐进破坏过程,从而减小围岩塑性区|加长了锚杆的拉拔长度,减小围岩与初支接触压力,改善隧道支护的受力状况,有效地控制隧道变形。  相似文献   

12.
成兰铁路茂县隧道穿越龙门山活动断裂带,地层以千枚岩为主,围岩破碎、软弱、强度低,且存在高地应力。在茂县隧道1号斜井施工过程中,遇到了围岩大变形、喷射混凝土开裂、钢拱架扭曲等现象。为了解决这一技术难题,在施工现场将斜井按正洞施作,设置4种不同的支护体系试验段,并对围岩变形、围岩与初支接触压力、钢拱架应力进行监测分析,得出以下结论:I20工字钢刚度低,不能有效地抵抗围岩前期变形,使围岩的变形进入塑性流动阶段;H175型钢刚度大,与3 m长短锚杆相结合能主动控制围岩的变形,能有效地控制围岩前期变形,8 m长的锚杆能被动控制围岩变形,能有效地抑制围岩塑性区的扩大;以H175钢拱架+3 m锚杆+8 m锚杆+喷射混凝土+超前注浆小导管为主的初期支护体系对茂县隧道高地应力千枚岩大变形的控制有较好的效果,可为后期茂县隧道正洞的施作提供指导。  相似文献   

13.
高地应力软岩隧道开挖过程中围岩自稳能力差,极易出现坍塌、冒顶等大变形灾害,选择合适的施工工法至关重要。以某高地应力软岩隧道为对象,基于有限元仿真模型,结合现场监测结果,分析了采用上下台阶分步法施工时高地应力软岩隧道围岩及支护结构的力学行为。分析表明:(1)上下台阶分步法施工适合于高地应力软岩隧道开挖,具有围岩变形小、安全可靠的优点;(2)开挖时,围岩塑性区由边墙两侧拱腰向拱部和仰拱位置逐渐扩展;(3)由于洞顶、拱底均向洞内收敛,致使两侧腰处承受较大压力而向外扩张。两侧腰处围岩竖向应力较大,而洞顶和拱底附近则水平向应力集中。同样的,支护结构在两侧腰处承受较大拉应力,而在洞顶、拱底位置承受较大压应力。  相似文献   

14.
冉飞 《四川建材》2020,(3):69-70,73
利用Midas GTS软件建立高地应力软岩条件下的隧道模型,通过数值模拟的方法研究了各类支护条件下隧道变形特征与施做各类支护技术后的围岩变形特征,得出了高地应力软岩围岩变形曲线与高地应力软岩隧道支护变形特征曲线。对比了各类支护技术的优劣程度,得出了较为有效的隧道大变形支护方式,提出了解决高地应力软岩隧道大变形的合理方法。  相似文献   

15.
王超超 《浙江建筑》2021,(2):29-32,44
隧道大变形已成为高应力软岩地层隧道施工中较为常见的问题.以新建铁路丽江至香格里拉线白岩子隧道软岩大变形施工为背景,对软岩大变形隧道进行了分类,通过现场试验对比不同支护参数下围岩变形抑制效果以及施工造价,提出了相对合理的大变形控制施工措施,主要结论如下:1)白岩子隧道大变形应为高地应力作用下的软弱节理围岩引起的挤压性大变...  相似文献   

16.
结合正在修建的兰新铁路第二双线LXS-7标的极高地应力大梁隧道,开展型钢钢架与格栅钢架支护机理研究。在综合考虑喷射混凝土时间硬化效应对初期支护强度的影响基础上,基于围岩-支护特征理论综合分析型钢钢架及格栅钢架的支护机理及其适应性,探索高地应力软岩隧道工程中不同刚度支护的力学响应过程,绘制高地应力软岩隧道几种可能的围岩-支护特征曲线,为高地应力软岩隧道合理支护形式的确定提供理论依据,并提出适合于围岩大变形的合理支护形式,以及控制高地应力软岩隧道大变形的合理措施。  相似文献   

17.
为了探明小净距隧道穿越挤压性软岩地层的大变形机制,提出相应的大变形控制技术,本文采用理论分析、数值计算、现场试验等手段对这种隧道大变形的影响因素、围岩变形规律、支护受力特征等进行研究,得出主要结论如下:(1)高构造应力、陡倾围岩产状、低围岩强度、近接施工扰动等多因素的耦合作用,导致了该隧道大变形的发生;(2)后行隧道对先行隧道的卸荷扰动,一方面使先行隧道承受偏压荷载,另一方面使先行隧道中岩柱侧围岩向洞外产生弯曲破坏,主要表现在先行隧道中岩柱侧边墙位移的减小、初期支护拱部受力状态的转变、二次衬砌拱部和仰拱拉应力的增大;(3)根据围岩变形和支护受力情况,按近接施工影响程度对小净距隧道进行分区,并以此作为控制措施动态调整和工程类比的依据;(4)严格控制施工工序,避免先行隧道二次衬砌端头处于后行隧道开挖作业面之内,并根据应力分布特征调整隧道断面形状,根据岩体产状特征调整锚杆角度,根据近接扰动情况对中岩柱进行保护与加固。  相似文献   

18.
高地应力软岩隧道合理支护方案研究   总被引:1,自引:1,他引:0  
 基于高地应力软岩隧道明显流变效应的特点,提出在喷锚网支护的基础上增设U型钢可压缩支架和泡沫混凝土填充层的支护方案。利用建立的U型钢连接件力学模型和围岩与支架接触模型,分析2种支护方案下,宜昌-巴东(宜巴)高速公路峡口高地应力软岩隧道的长期稳定性。研究表明:(1) 建立的U型钢可压缩支架的连接件力学模型和围岩与支架之间的接触模型可以很好地反映支架缩动性与摩阻力之间的关系;(2) U型钢可压缩支架和泡沫混凝土填充层的联合支护既可以吸收围岩的流变变形,减小二次衬砌上的形变压力,又可以提供稳定的支护力,有利于高地应力软岩隧道的长期稳定。  相似文献   

19.
强震后软岩隧道的变形和破坏特征与一般隧道不同。根据“5.12”强震区唐家山隧道围岩变形与应力监测数据,对震后软岩隧道变形与破坏机制进行了分析。研究表明:(1)震区软岩隧道变形空间分布不对称,水平收敛是拱顶沉降的2~4倍,这是震后软岩的扩容性质和隧道所处的垂直方向高地应力环境所共同决定的;(2)隧道变形的空间效应约束范围为2~3D,在开挖面约束范围内,变形是空间效应和时效应的耦合;(3)隧道不同部位的围岩变形与破坏方式与围压性质密切相关,边墙处围岩在“形变压力”作用下易发生松弛大变形;拱部一定范围内的岩体存在整体下沉现象,拱部围岩易被架空而形成“松散压力”并诱发位移突变和破坏。研究对同类工程具有一定参考价值。  相似文献   

20.
高地应力隧道中围岩侧压力是导致围岩发生分区破裂、岩爆及挤压大变形等非线性破坏的原因之一,研究不同侧压力系数下隧道围岩分区破裂的规律有助于合理布设高地应力隧道系统锚杆。本文通过建立全粘结锚杆与围岩相互作用的数值分析模型,基于锚杆中性点理论及隧道围岩分区破裂理论,分析了高地应力下不同围岩侧压力对锚杆中性点及围岩分区破碎的影响,确定高地应力隧道在不同侧压力系数下围岩分区破裂的范围及厚度,根据围岩分区破裂特征,对不同侧压力系数下高地应力隧道系统锚杆的布设给出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号