首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
运用硝酸-氢氟酸溶解硅锰合金,将硅锰合金中的硅转换成氟硅酸钾沉淀,氟硅酸钾沉淀在热水的作用下分解出氢氟酸,加入酚酞,用氢氧化钠滴定至微红色为终点。该方法简单快捷,重现性好,能较好的进行硅元素的定值分析工作。  相似文献   

2.
采用硝酸、氢氟酸溶解试样,高氯酸冒烟,以稀盐酸溶解盐类,定容制得母液。分取部分母液以强碱氢氧化钠沉淀分离铁、锰、钛等元素,用盐酸调整滤液pH4-5,加入过量EDTA,以PAN为指示剂,用铜标准溶液返滴定法测定铝量。以钙黄绿素为指示剂,用EGTA标准液滴定钡量。用氟硅酸钾沉淀酸碱滴定法测定硅量。  相似文献   

3.
利用氟硅酸钾溶解于沸水中生成氢氟酸的原理。试样以硝酸、氢氟酸溶解,硅转化为硅氟酸,加入硝酸钾生成氟硅酸钾沉淀。经过滤、洗涤沉淀中的游离酸后,溶解于中性沸水中,生成氢氟酸,以溴麝香草酚蓝为指示剂,用氢氧化钠标准溶液滴定游离出的氢氟酸,借此测定硅锰铝合金中硅含量,其相对标准偏差小于0.0796%。  相似文献   

4.
试样以硝酸、氢氟酸溶解,使硅转化为氟硅酸,加入饱和硝酸钾生成氟硅酸钾沉淀,加沸水使氟硅酸钾水解释放出氢氟酸,用氢氧化钠标准溶液滴定,进行稀土硅铁合金及镁硅铁合金中硅量的测定,取得了较好的效果.  相似文献   

5.
试样以硝酸、氢氟酸溶解,使硅转化为氟硅酸,加入饱和硝酸钾生成氟硅酸钾沉淀,加沸水使氟硅酸钾水解释放出氢氟酸,用氢氧化钠标准溶液滴定,进行稀土硅铁合金及镁硅铁合金中硅量的测定,取得了较好的效果.  相似文献   

6.
硅铁合金中硅测定方法的改进   总被引:1,自引:0,他引:1  
采用硝酸-氢氟酸溶样,再加入钾盐,生成氟硅酸钾沉淀析出。经过滤洗净游离酸后,用热水溶解沉淀,以氢氧化钠标准溶液滴定游离出的氢氟酸,从而测得硅含量。  相似文献   

7.
试样以硝酸、氢氟酸溶解后,硅转化为硅氟酸,在强酸性溶液中加入过量钾盐,使其生成氟硅酸钾沉淀,经过滤洗涤净游离酸后,用沸水溶解氟硅酸钾沉淀,游离出的氢氟酸,以溴麝香草酚蓝为指示剂,用氢氧化钠标准溶液滴定游离出的氢氟酸,从而测得硅含量,结果准确。  相似文献   

8.
罗策  刘婷  白焕焕  黄永红  李剑 《冶金分析》2016,36(10):69-75
为实现Ti80钛合金样品的快速有效溶解,并制得适用于电感耦合等离子体原子发射光谱法(ICP-AES)测定Ti80钛合金中铝、铌、锆、钼、铁含量的样品溶液,对硫酸-硝酸、硝酸-氢氟酸、硫酸-氢氟酸-硝酸及盐酸-氢氟酸-硝酸4种酸体系对应的溶解条件进行了探讨。对4种溶解体系分别进行不同条件试验,根据溶解现象及样品溶解的完全程度初步确定了每种酸体系的溶解条件。硫酸-硝酸溶解体系的溶解条件为:10.0 mL硫酸(1+1),290~310 ℃下加热溶解,溶解完全后逐滴加入硝酸至溶液褪色;硝酸-氢氟酸溶解体系的溶解条件为:预先在样品中加入10.0 mL水,然后相继加入2.0 mL硝酸和2.0 mL氢氟酸,直至样品溶解完全;硫酸-氢氟酸-硝酸溶解体系的溶解条件为:预先在样品中加入10.0 mL硫酸(1+3),然后加入2.0 mL氢氟酸使样品溶解完全,加入2.0 mL硝酸至溶液褪色,再加热至冒烟;盐酸-氢氟酸-硝酸溶解体系的溶解条件为:预先在样品中加入15.0 mL盐酸(1+1),然后加入1.0 mL氢氟酸使样品溶解完全,加入2.0 mL硝酸使溶液褪色。在初步确定的溶解条件下,分别采用4种溶解体系对Ti80钛合金样品进行溶解,制得样品溶液;对样品溶液中铝、铌、锆、钼和铁的稳定性进行了考察并对其含量进行了测定,结果表明4种酸体系对应的溶解条件下制得的样品溶液均适用于电感耦合等离子体原子发射光谱法(ICP-AES)测定Ti80钛合金中铝、铌、锆、钼和铁含量,确定的4种酸体系对应溶解条件合理。  相似文献   

9.
有机硅偶联剂合成中产生的废催化剂,含有微量的铂和大量有机硅高聚物,铂的分离、分析难度较大。本文采用王水与氢氟酸共同溶解硅和铂的方法,达到铂分析的全溶制样目的。研究了预处理制样过程中各种因素对铂分析的影响。实验结果表明,溶解1.000 g废催化剂样品,优化的操作因素如下:氢氟酸量为5 mL,除氟用硫酸量为2 mL,溶铂用的王水量为5mL,除硝酸用的盐酸量为1 mL,定容溶液盐酸浓度为3 mol/L以及先加王水后加氢氟酸的试剂加入顺序。硅偶联剂合成中废催化剂样品用本方法处理后以氯化亚锡分光光度法测定铂含量,分析值重现性好。  相似文献   

10.
以相似材质硼铁和硅钢的化学分析方法为基础,建立了氟硅酸钾沉淀滴定法测定铁基非晶合金铁硅硼中硅、酸溶中和滴定法测定铁基非晶合金铁硼硅中硼的方法。硼的测定在酸溶样方法方面进行了改进,即酸不溶的白色絮状物经过滤分离用碱溶液溶解后,与滤液进行合并。硅的测定也将文献方法进行了一些改进,如减少了氢氟酸的用量并直接加入硝酸钾固体促进氟硅酸钾沉淀完全。本方法与传统方法硅和硼的检测结果相符,且重复性较好。  相似文献   

11.
夏培民 《甘肃冶金》2013,35(4):63-64,73
将经典的氟硅酸钾碱滴定法改为硅钼蓝光度法快速测定硅。试样用硝酸和氢氟酸溶解,多余的氢氟酸用饱和硼酸溶液配合,在一定酸度下,加入钼酸铵与硅酸生成黄色的硅钼杂多酸,再加入草酸以破坏磷等与钼酸铵形成的杂多酸并络合三价铁,最后加入硫酸亚铁铵将硅钼黄还原为硅钼蓝,然后用分光光度法测定硅含量的方法。实验结果表明,在0.1~0.6mol/L的酸度下,正硅酸与钼酸铵生成硅钼杂多酸,选择硅钼蓝的吸收波长在660nm处,表观摩尔吸光系数为ε=8.69×103L·mol-1·cm-1,Si的浓度在0~500mg/100mL范围内符合比尔定律,相关系数r=0.9998。本方法应用于硅铬合金中硅含量的测定,方法选择性强,且缩短了分析周期。  相似文献   

12.
镍铬硅硼合金试样由于很难在盐酸、硝酸、王水等酸中溶解完全,因此准确、快速的测定其残余铝含量,给分析者提出了一个新任务.本文经试验,确定用氢氟酸—王水于聚四氟乙烯烧杯中使试样能很快溶解完全,同时以铜试剂沉淀分离后直接在滤液中用半二甲酚橙与铝显色并进行测定,方法简单、快速,重现性好,适用于0.01%以上铝的分析.  相似文献   

13.
唐清  黄葡英  李雨 《冶金分析》2022,42(5):43-47
在采用硅钼蓝分光光度法对铝钛硼合金中硅进行测定时,样品中的钛会与钼酸铵反应生成钼酸钛沉淀,使溶液中钼酸根浓度降低,影响硅钼酸发色,同时钼酸钛沉淀也会因散射作用使吸光度发生变化,从而对测定结果产生影响。实验采用氢氧化钠和过氧化氢溶解样品,于微酸性条件下,在硅钼黄显色阶段加入两倍于普通硅钼蓝分光光度法中钼酸铵的量,可以实现硅钼黄显色完全。在将硅钼黄还原为硅钼蓝前,加入草酸-硫酸混合酸,因草酸对钛有络合作用,能加速钼酸钛的溶解,故而消除了钼酸钛沉淀对测定的干扰。用抗坏血酸还原硅钼黄为硅钼蓝,稳定30 min后,于分光光度计上在波长660 nm处进行测定,建立了不分离钛直接用分光光度法测定铝钛硼合金中硅的方法。结果表明,在优化的实验条件下,硅质量在50~250 μg范围内与其对应的吸光度呈现良好的线性关系,相关系数不小于0.999。检出限为0.002 8%(质量分数),定量限为0.009 3%(质量分数)。共存离子的干扰试验表明,铝钛硼合金中钛、硼、铝、铁、钒在其含量上限时,不干扰硅的测定。将实验方法用于测定铝钛硼合金样品中硅,结果与电感耦合等离子体原子发射光谱法(ICP-AES)或重量法测定结果吻合,相对标准偏差(RSD,n=11)小于1%。  相似文献   

14.
建立了微波消解分解样品,电感耦合等离子体质谱法测定钢铁及合金中总铝和总硼的方法。采用自制的提纯装置提纯氢氟酸。借助微波消解炉,用3mL盐酸、1 mL硝酸和1 mL氢氟酸(1+1),在适宜的压力和温度下消解可将样品消解完全。铍、钪随仪器参数波动引起的信号变化规律与硼、铝的相同。以被测样品主量元素和样品分解的酸进行基体匹配,采用Be和Sc内标补偿仪器漂移和校正基体效应。用本法测定样品中总铝和总硼,快速、简便、精密度好,测定结果与认定值符合较好,适于测定钢铁及合金中质量分数为0.0001%~0.1%总铝和总硼。  相似文献   

15.
以盐酸、氢氟酸、高氯酸和硝酸混合酸溶解,选择Zr 257.139nm为分析线,高纯铁基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定锆,从而建立了硅锆合金中高含量锆的测定方法。锆的质量分数为3.04%~30.42%时与其发射强度呈线性,校准曲线的线性相关系数为0.999 8;方法检出限为0.007%(质量分数)、测定下限为0.033%。按照实验方法测定钛合金样品和钛合金标准样品中锆,结果的相对标准偏差(RSD,n=6)不大于1.2%。实验方法用于测定3个硅锆合金样品中锆,结果与苦杏仁酸重量法测定结果一致。  相似文献   

16.
本文介绍了一种硅钙合金、硅钡合金中铝量的测定方法。样品用硝酸溶解,氢氟酸挥硅,高氯酸冒烟,加入氯化钡溶液保持电解质平衡,用硼酸溶液去氟,强碱分离铁、锰、钒、铌等干扰元素,用过量的EDTA络合铝,通过调节酸度,用PAN作指示剂,用硫酸铜标准溶液返滴定来测定硅钙合金、硅钡合金中铝量。  相似文献   

17.
使用氢氧化钠溶液和盐酸先后分解55%铝锌硅合金,ICP-AES光谱法(电感耦合等离子体发射光谱法)测定溶解完全55%铝锌硅合金溶液中硅的含量,探索了各影响因素对实验结果的影响,如分析线、RF功率、铝锌基体、氯化钠基体等干扰。确定最佳实验条件,方法检出限为0.009%,精密度RSD小于1.2%,回收率为98%~100.44%。  相似文献   

18.
通过硫酸溶解法和硝酸溶解法处理碳钢,采用还原型硅钼酸盐光度法对碳钢中的硅含量进行了测定。对硫酸溶解法、硝酸溶解法显色反应的条件进行优化,发现不论选择硫酸溶解法还是硝酸溶解法溶解试样,均选择测定波长810 nm,硅钼蓝显色时间5 min,50 g/L钼酸铵溶液用量5 mL,50 g/L草酸溶液用量9 mL,60 g/L硫酸亚铁铵溶液用量5 mL,但用硫酸溶解法处理试样的硅钼黄显色时间为25 min,用硝酸溶解法处理试样的硅钼黄显色时间为30 min。按实验方法对标准溶液系列进行基体匹配并进行测定,结果表明,硅的质量浓度在0~1 μg/mL之间与其吸光度呈线性关系,硫酸(1+17)溶解试样的线性回归方程为ρ=1.333 A+0.004,相关系数r=0.999,方法检出限为0.013%;硝酸(1+3)溶解试样的线性回归方程为ρ=1.277 A+0.006 8,相关系数r=0.999,方法检出限为0.014%。在优化条件下分别用硫酸溶解法、硝酸溶解法处理3个碳钢标准样品,按实验方法进行硅含量的测定,测定值与认定值一致,相对标准偏差(RSD,n=10)在0.26%~1.1%之间。  相似文献   

19.
酸溶-氟硅酸钾滴定法测定铅锌矿中二氧化硅   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了酸分解铅锌矿试样,氟硅酸钾滴定法测定试样中二氧化硅的方法。铅锌矿样品依次用硝酸、盐酸消解后,在加入氢氟酸的情况下,二氧化硅与氢氟酸反应形成氟硅酸,并在硝酸介质中与过量硝酸钾反应生成氟硅酸钾沉淀,经过滤、洗涤后溶于沸水中,以硝氮黄为指示剂,采用氢氧化钠标准溶液滴定水解后生成的氢氟酸,从而间接测定了铅锌矿中二氧化硅的含量。实验表明:以10 mL硝酸为沉淀介质,3.0 g硝酸钾为沉淀剂,沉淀放置20 min后过滤沉淀并用50 g/L硝酸钾-50%乙醇溶液洗涤沉淀,可有效消除铅锌矿中大量铅的干扰;选择硝氮黄为指示剂,滴定终点颜色突变更明显。方法应用于铅锌矿标准样品中二氧化硅的测定,结果与认定值相符;应用于铅锌矿实际样品测定,结果的相对标准偏差(RSD,n=12)分别为0.5%和1.3%。与传统的重量法进行对比试验,结果一致。方法适用于测定铅锌矿中质量分数为8%~67%的二氧化硅。  相似文献   

20.
锰铁合金、锰硅合金、金属锰中铅、砷、钛、铜、镍、钙、镁、铝的含量决定了产品质量,以往常采用化学法或原子吸收光谱法进行测定,但存在准确度较差或测定速度不能满足要求等问题。为了实现上述元素的准确、快速测定,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定锰铁合金、锰硅合金和金属锰中微量铅、砷、钛、铜、镍、钙、镁、铝的方法。实验以硝酸、盐酸、氢氟酸、高氯酸分解样品,并使硅与氢氟酸反应生成四氟化硅挥发除去,试液中剩余共存元素主要有铁、锰等。实验结果表明,铁不干扰测定,通过在标准溶液系列中进行锰基体匹配消除锰基体效应的影响。以2mL高氯酸和6mL盐酸混合酸(8%)作为分析介质,可以达到最佳分析效果。在各元素校准曲线线性范围内,线性相关系数在0.9992~0.9999之间;方法中各元素的检出限在0.0001~0.0040μg/mL。实验方法用于测定锰铁合金、锰硅合金、金属锰中铅、砷、钛、铜、镍、钙、镁、铝,结果的相对标准偏差(RSD,n=11)在2.2%~9.4%;回收率在95%~105%;选择7个实验室进行了验证试验,各实验室间结果基本一致;按照实验方法测定了4个标准样品(材字-32、YSB C 28618、YSB C 26605)中铅、砷、钛、铜、镍、钙、镁、铝,结果与认定值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号