共查询到20条相似文献,搜索用时 78 毫秒
1.
基于Gabor小波变换和最佳鉴别特征的掌纹识别 总被引:2,自引:1,他引:2
提出了一种提取掌纹图像特征的方法,该方法的实现过程如下:首先,计算掌纹图像上均布离散位置的二维Gabor小波变换系数的幅值,将其作为掌纹图像的原始特征;其次,利用主分量分析实现Gabor小波特征的降维;最后,通过线性判别分析提取最有利于分类的最佳鉴别特征。实验结果表明了该方法的有效性。 相似文献
2.
掌纹识别是一门新兴的生物特征识别技术.使用主成分分析对图像向量进行处理,向量维教一般都很高.二维主成分分析是直接采用二维图像矩阵来构建方差矩阵,与一维主成分分析相比能更精确地计算原始数据的协方差矩阵,双向二维主成分分析是二维主成分分析的改进算法,将其应用于掌纹识别,通过在水平和垂直2个方向上各执行1次二维主成分分析运算,消除了掌纹图像行和列的相关性,运用新准则选取了更适合于分类的主分量,大大压缩了特征的维数.在香港Poly-technic Universitv的Palmprint Database测试结果表明,该方法具有更高的识别率和更低的计算复杂度. 相似文献
3.
掌纹识别是一种新兴的生物特征识别技术。掌纹识别是用掌纹特征(包括人眼可见的和不可见的)来进行身份鉴别的一种方法。其中掌纹特征提取和掌纹特征匹配是掌纹识别研究的关键部分和核心内容。在特征提取方面,给出了两种改进的特征提取方法。先对掌纹图像进行傅里叶变换,再对变换后的图像进行主成分分析;针对掌纹图像的特点,对PCA进行改进,设计了适用于掌纹图像的分块主成分算法。将一整幅掌纹图像分为若干子块图像,在此基础上进行主成分分析。通过实验验证了改进的特征提取方法可以提高识别准确率。在特征识别方面,模版匹配虽然在一定程度上计算量小,准确率高,但容易陷入小样本问题。因此通过训练SVM分类器,进行掌纹识别。实验证明该方法有较好的可行性。 相似文献
4.
提出一种解决双向主成分分析(BDPCA)中小样本问题的掌纹识别方法。把掌纹感兴趣区域图像经过2DGabor小波变换后得到的每个图像都作为独立的样本,以增加每一类掌纹的样本数。设计一种基于样本散度矩阵的改进BDPCA算法进行特征提取。采用训练样本的k值矩阵代替训练样本的平均值矩阵,从而获得最优投影矩阵。将2DGabor与改进的BDPCA算法相结合进行掌纹识别。在PolyU掌纹库中的实验结果表明,该方法不仅减少了不同训练样本对识别率的影响,而且能够提高识别率,甚至当每类训练样本数仅为1时,也能得到较高的识别率,有效解决了掌纹识别的小样本问题。 相似文献
5.
基于Gabor局部相对特征的掌纹识别 总被引:1,自引:0,他引:1
Gabor变换是掌纹识别中提取纹理特征的一个重要工具,但其性能易受图像的变化以及不均衡噪声等因素影响,因此提出了一种基于Gabor局部相对特征的掌纹识别算法。该算法对原始图像进行微尺度不变Gabor滤波;结合分形学的思想,将滤波后的图像分成大小相等的子域,每个子域又分成多个相同的子块,计算每个子块与它所在子域的相对方差,将所有子块的相对方差排列组成表征图像的特征向量进行识别。该算法将微尺度不变与局部相对特性统一,所提取的特征对各种变化有很强的鲁棒性,提高了识别精度和效率。实验使用北京交通大学BJTU_PalmprintDB证明该算法的有效性。 相似文献
6.
7.
独立分量分析方法在图像处理中具有独特的优势,用于掌纹特征提取,使得变换后的各分量之间不仅互不相关,而且还尽可能的统计独立,能更全面的揭示掌纹特征间的本质结构。为了降低运算复杂度,提出了一种基于小波分解的独立分量掌纹特征提取方法。首先对掌纹图像做小波变换进行降维,在保留原始图像轮廓信息和细节信息的基础上,去掉高频噪声,然后进行独立分量分析,采用FastICA算法,试验结果表明,本方法比传统的独立分量分析方法的识别率更高,且计算量大大减少。 相似文献
8.
提出一种利用离散余弦变换提取掌纹的特征,通过支持向量机进行掌纹分类识别的方法。在利用离散余弦变换进行特征提取时,将变换系数矩阵左上角的部分元素作为掌纹图像的特征;在利用支持向量机进行掌纹分类识别时,采用“一对多”的分类方案。实验结果表明该方法的有效性。 相似文献
9.
周作梅 《计算机光盘软件与应用》2015,(2):191+193
在掌纹图像的采集过程中,实际得到的掌纹图像中包含了噪声成分。噪声的存在,破坏了图像像素间在结构、纹理、内容等方面的相关性,不利于掌纹样本图像的特征提取。因此,针对所要提取的掌纹特征,选择适当的去噪算法,可以在去噪的同时去掉一些不必要的特征,从而可以简化后续的特征提取阶段的工作。 相似文献
10.
基于子空间特征融合的两级掌纹识别算法 总被引:1,自引:0,他引:1
针对单一PCA或PCA只能提取掌纹的线性或非线性特征,单一分类器的掌纹识别率低缺陷,提出一种子空间特征融合的两级掌纹识别方法(PCA-KPCA-SVM)。首先采用子空间特征提取方法PCA、KPCA分别提取掌纹图像线性和非线性特征,然后基于融合特征总类间距离最大准则,计算出最佳的融合系数,得到PCA、KPCA的融合掌纹特征,最后将融合特征输入到欧式距离分类器进行掌纹识别,如果拒绝识别,则输入支持向量机进行二次识别。采用Polyu掌纹图像库进行测试实验,结果表明,相对于对比算法,PCA-KPCA-SVM提高了掌纹识别率,有效降低了掌纹的误识率和拒识率。 相似文献
11.
针对利用单一方法进行掌纹图像识别所得的识别率难以提高这一情况,提出一种利用掌纹图像经高斯高通滤波后的局部二进制模式特征和三级小波分解的细节图像的能量特征的融合特征进行掌纹识别的方法。在提取图像的局部二进制模式特征的时候,通过高斯高通滤波增强图像的对比度,从而提取出更有效的局部二进制模式特征,该特征对光照的变化具有一定的鲁棒性;小波变换的细节图像能量数据反映不同频率成分的局部细节特征。实验结果表明所提出的掌纹识别方法的有效性。 相似文献
12.
提出了一种基于局部二元模式(LBP)和局部保全投影(LPP)相结合的面部表情识别方法。使用LBP算子对图像分块处理,综合人脸局部和整体的特征;再使用LPP对表情特征降维,最后采用支持向量机对面部表情分类。在日本女性人脸表情库上实验表明,本文提出的方法有更好的识别率和更快的识别速度。 相似文献
13.
基于多尺度局部二值模式的人脸识别 总被引:1,自引:0,他引:1
提出了一种基于多尺度局部二值模式的人脸识别方法.局部二值模式已经被证明是人脸表示的一种有效算子,不过由于其太小以至于鲁棒性不高.在多尺度局部二值模式中,计算是基于块子区域的平均值,而不是基于单个像素值进行的.人脸图像首先被分成小的子区域,具有不同权值的BLBP算子抽取每一子区域的直方图,然后把它们连接起来,组成一个空域增强的特征直方图.在X~2统计量作为不相似度量计算的特征空间里,采用最近邻分类器完成分类识别.实验表明,该方法优于其它的基于LBP的人脸识别算法. 相似文献
14.
15.
16.
最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视.步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提取步态能量图(GEI)的局部特征并用于识别.首先,为了更好地提取局部信息,把步态能量图(GEI)分块,提取各个子块上的LBP特征,然后把各子块在特征层进行融合,得到整个步态能量图(GEI)的特征表 达;同时为了更好地挖掘步态能量图(GEI)的信息,对LBP模式进行了扩展.由于得到的LBP特征维数较高,利用具有降维和良好识别能力的辨识共同向量(DCV-Discriminant Common Vector)对步态能量图的LBP特征进行维数约减并增加类间距离.最后,只需利用简单的最近邻分类器就能取得较好的识别效果.将该算法在CASIA数据库上进行了试验,并取得了较高的正确识别率. 相似文献
17.
目前的草图人脸识别主要集中在人脸照片-草图之间的相互转换,以此减少照片-草图特征之间的差异,从而进行识别。文中提出一种使用基于中心误差扩散局部二值模式的编码方法来获得具有相同模式的人脸形式,减小照片-草图之间的差异。在草图识别实际是单样本人脸识别的背景下,通过小波包分解和局部二值模式编码扩充样本数目。然后使用PCA+LDA来提取特征进行识别。实验结果表明,该算法可有效减小照片-草图之间的模式差异,且识别率和性能要优于之前的基于伪草图合成的方法。 相似文献
18.
基于高级局部二元模式直方图映射的表情识别 总被引:2,自引:0,他引:2
提出高级局部二元模式直方图映射(ALBPHP)方法,将标记信息完整且标记位置统一的高级局部二元模式(ALBP)直方图映射到局部保持投影(LPP)空间获得低维ALBPHP特征.相比于ALBP特征,ALBPHP特征不仅维数低而且在表征人脸图像时具有更强的鉴别力.在JAFFE和Cohn-Kanade两个人脸表情库上对ALBPHP和ALBP方法比较验证,结果表明:采用相同的分类器时ALBPHP的识别率总是高于ALBP. 相似文献
19.
20.
摘 要:掌纹识别是受到较多关注的生物特征识别技术之一。在各类掌纹识别的方法中, 基于方向特征的方法取得了很好的效果。为了进一步提升识别精度,提出一种融合全局和局部 方向特征的掌纹识别算法,主要融合了基于方向编码的方法、基于方向特征局部描述子的方法 和结合方向特征和相关滤波器的方法。其中前 2 种方法属于空间域方法,可很好地提取掌纹的 局部方向特征;而第 3 种方法属于频域方法,能有效地提取全局方向特征。在匹配值层对该 3 种方法的识别结果进行融合。本文算法在 2 个掌纹数据库上进行了验证,实验结果表明,本文 方法的识别性能明显优于其他几种掌纹识别方法。 相似文献