首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the growth of Zn1−xMgxO (ZMO) thin films on quartz substrate using pulsed laser deposition (PLD) technique. The influence of varying Mg composition on structural, electrical and optical properties of ZMO films has been systematically investigated. Increase in Mg content (in the range 0.0?x?1.0), reflects the structural phase transition from wurtzite via mixed phase region to cubic one. X-ray diffraction (XRD) studies indicate the hexagonal wurtzite phase at Mg composition ranging from 0% to 30%; mixture of wurtzite and cubic phases for 40% and single cubic phase at Mg content greater than 50%. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal ZMO decreases with corresponding increase in Mg content, which result in the structure gradually deviating from the wurtzite structure. The optical measurements reveal a blue shift in absorption edge and increase in transmittance from 75% to 96% with increase in Mg content. Tuning of the band gap has been obtained from 3.41 to 6.58 eV with corresponding increase in Mg content from x=0.0 to 1.0, which demonstrates that the films are useful for window layer of solar cells that improve the overall efficiency by decreasing the absorption loss.  相似文献   

2.
An adjustment of a conduction band offset (CBO) of a window/absorber heterointerface is important for high efficiency Cu(In,Ga)Se2 (CIGS) solar cells. In this study, the heterointerface recombination was characterized by the reduction of the thickness of a CdS layer and the adjustment of a CBO value by a Zn1−xMgxO (ZMO) layer. In ZnO/CdS/CIGS solar cells, open-circuit voltage (Voc) and shunt resistance (Rsh) decreased with reducing the CdS thickness. In constant, significant reductions of Voc and Rsh were not observed in ZMO/CdS/CIGS solar cells. With decreasing the CdS thickness, the CBO of (ZnO or ZMO)/CIGS become dominant for recombination. Also, the dominant mechanisms of recombination of the CIGS solar cells are discussed by the estimation of an activation energy obtained from temperature-dependent current-voltage measurements.  相似文献   

3.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

4.
Buffer layers such as CdS and ZnS are used in high efficiency Cu(In,Ga)Se2 (CIGS) thin film solar cells. Eliminating buffer layer is attractive to realize low-cost thin film solar cells by reducing fabrication process. However, the elimination of the buffer layers leads to shunting due to the interface recombination between transparent conductive oxide (TCO) and CIGS layers. To reduce the interface recombination, the control of conduction band offset (CBO) is effective. In this study, we fabricated Zn1−xMgxO:Al (ZMO:Al) as the TCO for the CBO control. ZMO:Al was prepared by co-sputtering of ZnO:Al2O3 (ZnO:Al) and MgO:Al2O3 targets. ZMO:Al shows high transmittance in visible region and the band gap energy widen with the addition of Mg to ZnO:Al. Buffer-less CIGS solar cells with an Al/NiCr/TCO/CIGS/Mo/soda-lime glass structure using ZMO:Al and ZnO:Al were fabricated. For comparison, ZnO/CdS buffered cell was also fabricated. Current density-voltage characteristics of the devices showed the cell with ZMO:Al film achieved higher efficiency compared to the buffer-less cell with ZnO:Al. This result suggested that the control of CBO is important to reduce interface recombination between TCO layer and CIGS absorber.  相似文献   

5.
The effects of conduction band offset of window/Cu(In,Ga)Se2 (CIGS) layers in wide-gap CIGS based solar cells are investigated. In order to control the conduction band offset, a Zn1−xMgxO film was utilized as the window layer. We fabricated CIGS solar cells consisting of an ITO/Zn1−xMgxO/CdS/CIGS/Mo/glass structure with various CIGS band gaps (Eg≈0.97–1.43 eV). The solar cells with CIGS band gaps wider than 1.15 eV showed higher open circuit voltages and fill factors than those of conventional ZnO/CdS/CIGS solar cells. The improvement is attributed to the reduction of the CdS/CIGS interface recombination, and it is also supported by the theoretical analysis using device simulation.  相似文献   

6.
Cd1−xZnxTe alloy films with 1.6 and 1.7 eV band gaps were deposited by RF magnetron sputtering from targets made either of mixed powders or alloys of CdTe and ZnTe (25% and 40%). High-quality polycrystalline films with the (1 1 1) preferred orientation were obtained. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, resistivity, optical absorption, Raman, and photoluminescence. The EDS, XRD, and optical absorption analysis indicated that the x-value of the as-grown films were typically 0.20 and 0.30 for films sputtered from 25% and 40% ZnTe containing targets, respectively. The as-deposited alloy films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. Therefore, we have studied various post-deposition treatments with vapors of chlorine-containing materials, CdCl2 and ZnCl2, in dry air or H2/Ar ambient at 390 °C. The best performance of a Cd1−xZnxTe cell (, ) was found for treatment with vapors of the mixed CdCl2+0.5%ZnCl2 in an H2/Ar ambient after pre-annealing at 520 °C in pure H2/Ar.  相似文献   

7.
Polycrystalline Cu(InGa)Se2 (CIGS) thin-film solar cells using evaporated InxSey and ZnInxSey buffer layers are prepared. The purpose of this work is to replace the chemical bath deposited CdS buffer layer with a continuously evaporated buffer layer. In this study, a major effort is made to improve the performance of CIGS thin-film solar cells with these buffer layers. The relationship between the cell performance and the substrate temperature for these buffer layers is demonstrated. Even at the high substrate temperature of about 550°C for the buffer layer, efficiencies of more than 11% were obtained. Furthermore, the IV characteristics of the cells using these buffer layers are compared with cells using CdS buffer layers fabricated by chemical bath deposition method. We have achieved relatively high efficiencies of over 15% using both the ZnInxSey and the CdS buffer layers.  相似文献   

8.
The electrodeposition of Zn1−xCdxSe polycrystalline semiconducting thin films from aqueous acidic bath without any additives onto tin oxide-coated conducting glass and titanium substrates are described. The influence of deposition parameters on the film formation and deposition mechanism based on cyclic voltammetry is discussed. X-ray diffraction studies showed the polycrystalline wurtzite nature for all the films deposited under the proposed conditions. The optical studies revealed the band gap values in the range between 2.82 and 1.72 eV as the film composition changes from ZnSe to CdSe. It has been observed that the concentration of cadmium salt plays an essential role on the alloy formation. The surface morphological studies and composition analysis were carried out and the results are discussed.  相似文献   

9.
Highly c-axis oriented Mg:ZnO films were fabricated on Al2O3 substrate by radio frequency sputtering for different substrate temperatures. The crystal structure revealed that the Mg dopants are well integrated into ZnO wurtzite lattice. X-ray photoelectron spectroscopy measurements also confirmed the successful incorporation of Mg into ZnO. The substrate temperature exhibit significant influence on the optical absorbance and band gap of Mg:ZnO films. Scanning electron microscope images revealed the formation of Mg:ZnO nanorods with good crystalline quality. The films prepared at 1200 °C show well grown rods of Mg:ZnO due to strengthening of the preferred orientation of ZnO along the c-axis. The Mg:ZnO/Al2O3 films prepared at different temperature were tested for its sensing performance towards 200 ppm of H2 at room temperature. The Mg:ZnO sensor prepared at 1200 °C revealed fast response and recovery time of about 85 s and 70 s, respectively. The response of the sensor was linear to H2 concentration in the range of 100–500 ppm. It can be summarized that this high performance H2 sensor has potential for use as a portable room temperature gas sensor.  相似文献   

10.
Annealed Zn1−xMgxO/Cu(In,Ga)Se2 (CIGS) interfaces have been characterized by ultraviolet light excited time-resolved photoluminescence (TRPL). The TRPL lifetime of the Zn1−xMgxO/CIGS film increased on increasing the annealing temperature to 250 °C, whereas the TRPL lifetime of the CdS/CIGS film had little change by annealing at temperatures lower than 200 °C. This is attributed to the recovery of physical damages by annealing, induced by sputtering of the Zn1−xMgxO film. The TRPL lifetime abruptly decreased with annealing at 300 °C. The diffusion of excess Zn from the Zn1−xMgxO film into the CIGS interface is clearly observed in secondary ion mass spectroscopy (SIMS) depth profiles. These results indicate that excess Zn at the vicinity of the CIGS surface acts as non-radiative centers at the interface. The TRPL lifetime of the Zn1−xMgxO/CIGS film annealed at 250 °C reached values to be comparable to that of the as-deposited CdS/CIGS film. Performance of the Zn1−xMgxO/CIGS cells varied with the annealing temperature in the same manner as the TRPL lifetime. The highest efficiency of the Zn1−xMgxO/CIGS solar cells was achieved for annealing at 250 °C. The results of the TRPL lifetime on annealing show that the cell efficiency is strongly influenced by the Zn1−xMgxO/CIGS interface states related to the damages and diffusion of Zn.  相似文献   

11.
Ti1−xAlxN thin films were deposited by reactive magnetron sputtering. The obtained different stoichiometries give rise to different optical properties as the films change from metallic to dielectric. In this work the IR reflectivity of these coatings is investigated taking into account different application fields for IR selective Ti1−xAlxN thin films.Low Al content coatings present high reflectivity, high absorptance and low thermal emittance. High Al compositions give raise to coatings with high absorptance and high thermal emittance.The composition of the coatings was evaluated combining electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy. Scanning electron microscopy (SEM) revealed a columnar structure. Reflectance spectra for the visible and infrared spectral ranges were used to obtain the solar absorptance and thermal emittance values, used to calculate the equilibrium temperature of the coatings.The thermal stability in air from 300 to 600 °C was also evaluated.  相似文献   

12.
Electrical and optical characterisation of hydrogenated amorphous silicon–oxygen alloy thin films (a-SiOx:H, x<2) grown in a single chamber radio frequency plasma enhanced chemical vapour deposition (PECVD) system at a high substrate temperature of 300 °C is presented. The samples were investigated by Fourier transform infrared spectroscopy (FTIR), optical transmission, the constant photocurrent method (CPM), conductivity and steady-state photoconductivity measurements. With increasing oxygen concentration, the Tauc gap increases from 1.69 to 2.73 eV. The sample with an oxygen concentration of 26.2 at% and a reasonably high bandgap of 2.18 eV shows photoconductivity comparable to that of pure a-Si:H films. The Urbach parameter (E0) increases almost linearly with oxygen concentration whereas the dangling bond defect density is found to be saturating at a value of about 7.1×1016 cm−3. One of the highly alloyed samples with exhibited a detectable photosensitivity.  相似文献   

13.
Cd-rich CdxHg1 − xTe films have been electrodeposited under potentiostatic conditions on conducting glass and Ti substrates from an acidic solution containing the respective ions as Cd2+:Hg2+:HTeO2+ = 100:1:2. Six films one after another have been prepared from a single electrochemical cell. EDAX analysis of the air annealed films show decreasing Hg content in the deposit as the number of film preparation increases. SEM analysis indicate undulatory surface with Hg-rich clusters at the top surface. XRD analysis indicate the presence of CdxHg1 − xTe along with . The CdxHg1 − xTe alloy formation have been confirmed from Raman shift measurements which change with composition, x. The as-deposited films are n-type but converts to p-type after air annealing. Spectral response measurements gave band gap values that change with Hg content in the deposit. Band gap values ranging from 1.1 eV to 1.45 eV have been estimated. Photoelectrochemical solar cells using polysulphide electrolyte have been fabricated which gave an open-circuit photovoltage and short-circuit photocurrent, respectively, as 325 mV and 5.5 mA/cm2 under 60 mW/cm2 intensity of illumination.  相似文献   

14.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

15.
CdSxSe1−x films of different composition (0 < x < 1) were deposited by pulse plating technique at different duty cycles in the range of 10-50%. The films were polycrystalline and exhibited hexagonal structure. The band gap of the films varies from 1.68 to 2.39 eV as the concentration of CdS increases. Energy Dispersive analysis of X-rays (EDAX) measurements indicate that the composition of the films are nearly the same as that of the precursors considered for the deposition. Atomic force microscopy studies indicated that the grain size increased from 20 to 200 nm as the concentration of CdSe increased. Photoelectrochemical (PEC) cell studies indicated that the films of composition CdS0.9Se0.1 exhibited maximum photoactivity. Mott-Schottky studies indicated that the films exhibit n-type behaviour. Spectral response measurements indicated that the photocurrent maxima occurred at the wavelength value corresponding to the band gap of the films.  相似文献   

16.
We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H2O vapor heating. Heat treatment with 2.1×106 Pa H2O vapor at 260°C for 3 h reduced the surface recombination velocity from 405 cm/s (before the heat treatment) to 38 cm/s for the thermally evaporated SiOx film/Si. Additional deposition of 140 nm-SiOx films (x<2) with a high density of fixed positive charges on the SiO2/Si samples further decreased the surface recombination velocity to 22 cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO2. Additional deposition of 210 nm SiOx films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6 ms. Combination of thermal evaporation of SiOx film and the heat treatment with high-pressure H2O vapor is effective for low-temperature passivation of the silicon surface.  相似文献   

17.
The structural, electronic and optical properties of cubic CdS1−xTex alloys, with Te-concentrations varying from 0% up to 100% are investigated. The calculations are based on the total-energy calculations using the full potential-linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) for the total-energy calculations, while for electronic properties in addition to that the Engel–Vosko (EV-GGA) formalism was also applied. The ground state properties for all Te-concentrations are presented. The optical dielectric constant is also determined for both the binary and their related ternary alloys.  相似文献   

18.
A system of highly structured TiO2/In(OH)xSy/PbS/PEDOT:PSS has been developed and investigated by photovoltage spectroscopy, X-ray photo- and Auger electron spectroscopies, electron microscopy, and photovoltaic response. TiO2, In(OH)xSy, PbS, and PEDOT:PSS serve as electron conductor, buffer layer, absorber, and hole conductor, respectively. Both buffer and absorber layers were prepared by chemical bath deposition. The band gap of as-prepared In(OH)xSy varied between 2.4 and 3.5 eV depending on the pH-value of the solution. In addition, the band gap of the PbS could be widened to about 0.85 eV making the application as absorber for solar cells feasible. At present, corresponding solar cell devices reach short-circuit current densities of about 8 mA/cm2 and open-circuit voltages of about 0.3 V.  相似文献   

19.
Thin film solar cells with chalcopyrite CuInSe2/Cu(InGa)Se2 (CIS/CIGS) absorber layers have attracted significant research interest as an important light-to-electricity converter with widespread commercialization prospects. When compared to the ternary CIS, the quaternary CIGS has more desirable optical band gap and has been found to be the most efficient among all the CIS-based derivatives. Amid various fabrication methods available for the absorber layer, electrodeposition may be the most effective alternative to the expensive vacuum based techniques. This paper reviewed the developments in the area of electrodeposition for the fabrication of the CIGS absorber layer. The difficulties in incorporating the optimum amount of Ga in the film and the likely mechanism behind the deposition were highlighted. The role of deposition parameters was discussed along with the phase and microstructure variation of an as-electrodeposited CIGS layer from a typical acid bath. Related novel strategies such as individual In, Ga and their binary alloy deposition for applications in CIGS solar cells were briefed.  相似文献   

20.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号